Changes in cytochrone oxidase activity following spatial working memory learning in rats treated with tacrine

  1. Méndez López, Magdalena 1
  2. Méndez López, Marta 1
  3. López Álvarez, Laudino 1
  4. Arias Pérez, Jorge Luis 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 2010

Volumen: 22

Número: 4

Páginas: 893-897

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

Cambios en la actividad citocromo oxidasa tras el aprendizaje de memoria de trabajo espacial en ratas tratadas con tacrina. Se evaluaron los cambios en la actividad citocromo oxidasa (COx) del hipocampo y estructuras relacionadas del sistema límbico tras el aprendizaje de memoria de trabajo espacial en ratas tratadas con tacrina (8,0 mg/Kg). Se añadieron al estudio grupos control tratados con solución salina y tacrina, y un grupo sin tratamiento. También se midieron los niveles de densidad óptica de la acetilcolinesterasa. Los grupos salino y tacrina mostraron resultados conductuales similares, pero se encontró una disminución en la actividad COx en la corteza prefrontal, núcleo accumbens, tálamo anterior, hipocampo y núcleo basal de Meynert del grupo tacrina. Del mismo modo, los niveles de la acetilcolinesterasa del grupo tacrina fueron más bajos en la mayoría de las regiones. Incrementos en la actividad COx relacionados con el aprendizaje fueron encontrados en la corteza prefrontal y el giro dentado en el grupo salino. El grupo tacrina presentó este tipo de incrementos en el tálamo anterodorsal, giro dentado, CA3 y núcleos mamilares. Estos resultados sugieren que la inhibición de la acetilcolinesterasa produce un patrón diferente de actividad neuronal asociada al aprendizaje en el sistema límbico de la rata.

Referencias bibliográficas

  • Cimadevilla, J.M., López, F., Nieto, L., Aguirre, M.J., & Fernández, R. (2009). Lidocaine, tetrodotoxin and their effect on consolidation of spatial memory. Psicothema, 21, 471-474.
  • Conejo, N.M., González-Pardo, H., López, M., Cantora, R., & Arias, J.L. (2007). Brain c-Fos immunocytochemistry and cytochrome oxidase histochemistry after a fear conditioning task. Psicothema, 19, 295-301.
  • Delatour, B., & Gisquet-Verrier, P. (2000). Functional role of rat prelimbic-infralimbic cortices in spatial memory: Evidence for their involvement in attention and behavioural flexibility. Behavioural Brain Research, 109, 113-128.
  • Furey, M.L., Ricciardi, E., Schapiro, M.B., Rapoport, S.I., & Pietrini, P. (2008). Cholinergic enhancement eliminates modulation of neural activity by task difficulty in the prefrontal cortex during working memory. Journal of Cognitive Neuroscience, 20, 1342-1353.
  • González-Lima, F., & Cada, A. (1994). Cytochrome oxidase activity in the auditory system of the mouse: A qualitative and quantitative histochemical study. Neuroscience, 63, 559-578.
  • González-Lima, F., & Jones, D. (1994). Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: A study with calibrated activity standards and metal-intensified histochemistry. Brain Research, 660, 34-49.
  • Hata, T., Kumai, K., & Okaichi, H. (2007). Hippocampal acetylcholine efflux increases during negative patterning and elemental discrimination in rats. Neuroscience Letters, 418, 127-132.
  • Irizarry, M.C., & Hyman, B.T. (2001). Alzheimer disease therapeutics. Journal of Neuropathology and Experimental Neurology, 60, 923-928.
  • Jackson, J.J., & Soliman, M.R. (1996). Effects of tacrine (THA) on spatial reference memory and cholinergic enzymes in specific rat brain regions. Life Sciences, 58, 47-54.
  • Jung, M.W., Wiener, S.I., & McNaughton, B.L. (1994). Comparisons of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. The Journal of Neuroscience, 14, 7347-7356.
  • Lee, I., & Kesner, R.P. (2003). Differential roles of dorsal hippocampal subregions in spatial working memory with short versus intermediate delay. Behavioral Neuroscience, 117, 1044-1053.
  • Levin, E.D., Briggs, S.J., Christopher, N.C., & Auman, J.T. (1994). Working memory performance and cholinergic effects in the ventral tegmental area and substantia nigra. Brain Research, 657, 165-170.
  • McIntyre, C.K., Pal, S.N., Marriott, L.K., & Gold, P.E. (2002). Competition between memory systems: Acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent task. The Journal of Neuroscience, 22, 1171-1176.
  • Méndez, M., Méndez-López, M., López, L., Aller, M. A., Arias, J., & Arias, J.L. (2009). Basal and learning task-related brain oxidative metabolism in cirrhotic rats. Brain Research Bulletin, 78, 195-201.
  • Méndez-López, M., Méndez, M., López, L., & Arias, J.L. (2009). Spatial working memory in Wistar rats: Brain sex differences in metabolic activity. Brain Research Bulletin, 79, 187-192.
  • Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47-60.
  • Murakami, Y., Ikenoya, M., Matsumoto, K., Li, H., & Watanabe, H. (2000). Ameliorative effect of tacrine on spatial memory deficit in chronic two-vessel occluded rats is reversible and mediated by muscarinic M1 receptor stimulation. Behavioural Brain Research, 109, 83-90.
  • Murphy, K.J., Foley, A.G., O'Connel, A.W., & Regan, C.M. (2006). Chronic exposure of rats to cognition enhancing drugs produces a neuroplastic response identical to that obtained by complex environment rearing. Neuropsychopharmacology, 31, 90-100.
  • Paxinos, G., & Watson, C. (2005). The rat brain in Stereotaxic Coordinates-The New Coronal Set, 5th ed. London: Elsevier Academic Press.
  • Pych, J.C., Chang, Q., Colon-Rivera, C., & Gold, P.E. (2005). Acetylcholine release in hippocampus and striatum during testing on a rewarded spontaneous alternation task. Neurobiology of Learning and Memory, 84, 93-101.
  • Rispoli, V., Marra, R., Costa, N., Rotiroti, D., Tirassa, P., Scipione, L., De Vita, D., Liberatore, F., & Carelli, V. (2008). Choline pivaloyl ester enhances brain expression of both nerve growth factor and high-affinity receptor TrkA, and reverses memory and cognitive deficits, in rats with excitotoxic lesion of nucleus basalis magnocellularis. Behavioural Brain Research, 190, 22-32.
  • Romanides, A.J., Duffy, P., & Kalivas, P.W. (1999). Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience, 92, 97-106.
  • Sarter, M., Bruno, J.P., & Givens, B. (2003). Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiology of Learning and Memory, 80, 245-256.
  • Schildein, S., Huston, J.P., & Schwarting, R.K. (2000). Injections of tacrine and scopolamine into the nucleus accumbens: Opposing effects of immediate vs delayed posttrial treatment on memory of an open field. Neurobiology of Learning and Memory, 73, 21-30.
  • Silman, I., & Sussman, J.L. (2008). Acetylcholinesterase: How is structure related to function? Chemico-Biological Interactions, 175, 3-10.
  • Slattery, D.A., Morrow, J.A., Hudson, A.L., Hill, D.R., Nutt, D.J., & Henry, B. (2005). Comparison of alterations in c-fos and Egr-1 (zif 268) expression throughout the brain following acute administration of different classes of antidepressant compounds. Neuropsychopharmacology, 30, 1278-1287.
  • Stackman, R.W., & Taube, J.S. (1998). Firing properties of rat lateral mammillary single units: Head direction, head pitch and angular head velocity. The Journal of Neuroscience, 18, 9020-9037.
  • Vann, S.D., & Aggleton, J.P. (2003). Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies or mammillothalamic tract. The Journal of Neuroscience, 23, 3506-3514.
  • Warburton, E.C., Baird, A.L., Morgan, A., Muir, J.L., & Aggleton, J.P. (2001). The conjoint importance of the hippocampus and anterior thalamic nuclei for allocentric spatial learning: Evidence from a disconnection study in the rat. The Journal of Neuroscience, 21, 7323-7330.
  • Woolf, N.J. (1991). Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology, 37, 475-524.