Comparaciones múltiples en diseños transversales con datos dependientes

  1. Menéndez de la Fuente, Ignacio A. 1
  2. Vallejo Seco, Guillermo 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Zeitschrift:
Psicothema

ISSN: 0214-9915

Datum der Publikation: 1995

Ausgabe: 7

Nummer: 2

Seiten: 401-418

Art: Artikel

Andere Publikationen in: Psicothema

Zusammenfassung

El supuesto de independencia de las observaciones parece una asunción razonable cuando se hace uso del diseño experimental de grupos al azar con el propósito de examinar datos de corte transversal. Sin embargo, en la práctica dicho supuesto raramente es verificado. Por este motivo, pretendemos determinar mediante el conocido método de Monte Carlo las tasas de error Tipo I y II cometidas al utilizar diversos procedimientos de comparación múltiple en presencia de correlación dentro de los grupos.

Bibliographische Referenzen

  • Carmer, S.G. y Swanson, M.R. (1973). An evaluation of ten multiple comparison procedures by Monte Carlo methods. Journal of the American Statistical Association, 68, 66-74.
  • Dunnett, C.W. (1982). Robust multiple comparisons. Communications in Statistics, Simulation and Computation, 11, 2611-2624.
  • Einot, I, y Gabriel, K.R. (1975). A study of the power of several methods of multiple comparisons. Journal of the American Statistical Association, 70, 574-583.
  • Fisher, R.A. (1935). The Design of Experiments. Edinburgh and London: Oliver and Boyd.
  • Gauss (1988). Washington: Aptech Systems. Inc.
  • Hayter, A.J. (1986). The maximun familywise error rate of Fisher's least significant diference test. Journal of the American Statistical Association, 81, 1000-1004.
  • Hochberg, Y. y Tamhane, A.C. (1987), Multiple Comparison Procedures. Nesv York. NY: John Wiley.
  • Keselman. H.J. y Rogan, J.C. (1978). A comparison of modified-Tukey and Scheffé methods of multiple comparisons for pairwise contrasts. Journal of the American Statistical Association, 73, 47-51.
  • Keuls, M. (1952). The use of the 'Studentized range in connection with and analysis of variance. Euphtyca, 1, 112-122.
  • Kinderman, A.J. y Ramage, J.G. (1976). Computer generation of normal random numbers. Journal of the American Statistical Association, 71, 893-896.
  • Kirk, S.A. (1990). Multiple comparisons: From Fisher to the future. Paper presented at the annual meeting of the American Educational Research Association. Boston.
  • Klockars, A.J. y Hancock, G.R. (1994). Per experiment error rates: The hidden costs of several multiple comparison procedures. Educational and Psychological Measurement, 54, 292-298.
  • Newman, D. (1939). The distribution of the range in samples from a normal population expressed in terms of an independent estimate of standard desviation. Biometrika, 31, 20-30.
  • Pavur, R. (1988).Type I error rates for multiple comparison procedures with dependent data, American Statistician, 42, 171-174.
  • Pavur, R. y Lewis, T.D. (1983),. Unbiassed F test for factorial experiments for correlated data, Communications in Statistics, Theory and Methods, 12, 829-840.
  • Petrinovich, L.E y Hardyck, C.D. (1969). Error rates for multiple comparison methods. Psychological Bulletin, 71, 43-54.
  • Ramsey, P.H. (1978a). Power differences between pairwise multiple comparisons. Journal of the American Statistical Association, 73, 479-485.
  • Ramsey, P.H. (1978b). Rejoinder to comment on power differences between pairwise multiple comparisons. Journal of the American Statistical Association, 73, 487.
  • Ringland, J.T. (1983). Robust multiple comparisons. Journal of the American Statistical Association, 78, 145-151.
  • Ryan, T.A. (1959), Multiple comparisons in psychological research. Psychological Bulletin, 56, 26-47.
  • Scariano, S.M. y Davenport, J.M. (1987). The effects of violations of independence assumptions in the one-way ANOVA. American Statistician, 41, 123-129.
  • Scheffé, H. (1959). The Analysis of Variance, New York: John Wiley and Sons.
  • Seaman, M.A., Levin, J.R. y Serlin, R.C. (1991). New developments in pairwise multiple comparisons: Some powerful and practicable procedures. Psychological Bulletin, 110, 577-586.
  • Toothaker, L.E. (1991). Multiple Comparisons for Researchs. Newbory Park. CA: Sage Publications.
  • Tukey, V.W. (1953). The Problem of Multiple Comparisons. Mimeographed Monograph. Princeton University.
  • Vallejo, G. y Fernández, P. (1990). Diseños de medidas repetidas con errores autocorrelacionados. Psicothema, 2, 189-209.
  • Welsch, R.E. (1977). Stepwise multiple comparison procedures. Journal of the American Statistical Association, 72, 566-575.