Brain metabolism after extended training in a fear conditioning task

  1. López Álvarez, Laudino 1
  2. López Ramírez, Matías 1
  3. Begega Losa, Azucena 1
  4. Arias Pérez, Jorge Luis 1
  5. Cantora, Raúl 1
  6. Vallejo Seco, Guillermo 1
  7. Conejo Jiménez, Nélida María 1
  8. González Pardo, Héctor 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 2005

Volumen: 17

Número: 4

Páginas: 563-568

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

Metabolismo cerebral tras el entrenamiento prolongado en una tarea de condicionamiento del miedo. El condicionamiento Pavloviano del miedo (CPM) es uno de los paradigmas conductuales más usados para estudiar la neurobiología del aprendizaje y la memoria. Se entrenaron ratas en una tarea de supresión condicionada, que recibieron tres (entrenamiento limitado) u ocho sesiones de condicionamiento (entrenamiento prolongado). Ambos grupos llegaron a suprimir la conducta de presión de una palanca cuando se estableció el condicionamiento. Posteriormente, se analizó el metabolismo neuronal de regiones límbicas empleando la histoquímica de la citocromo oxidasa. Se observó una disminución significativa del metabolismo cerebral en septum medial, tálamo anteroventral y núcleo mamilar medial tras un entrenamiento prolongado. Sin embargo, no se detectaron diferencias significativas con el entrenamiento prologando en la amígdala basolateral, región cerebral implicada tradicionalmente en la formación y consolidación de recuerdos aversivos establecidos durante el CPM. Nuestros resultados apoyan la implicación diferencial de las regiones límbicas seleccionadas en el condicionamiento del miedo y la ansiedad.

Referencias bibliográficas

  • Aggleton, J. P. and Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences, 22(3), 425-444.
  • Agin, V., Chichery, R. and Chichery, M-P. (2001). Effects of learning on cytochrome oxidase activity in cuttlefish brain. NeuroReport, 12, 113-116.
  • Allen, M. T., Padilla, Y. and Gluck, M. A. (2002). Ibotenic acid lesions of the medial septum retard delay eyeblink conditioning in rabbits (Oryctolagus cuniculus). Behavioral Neuroscience, 116, 733-738.
  • Beracochea, D. J. and Krazem, A. (1991). Effects of mammillary body and mediodorsal thalamic lesions on elevated plus maze exploration. NeuroReport, 2, 793-796.
  • Berger, T. W. and Thompson, R. F. (1978). Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. II: Septum and mammillary bodies. Brain Research, 156, 293-314.
  • Berry, S. D. and Thompson, R. F. (1979). Medial septal lesions retard classical conditioning of the nicitating membrane response in rabbits. Science, 205, 209-211.
  • Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. and LeDoux, J. E. (2001). Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learning and Memory, 8, 229-242.
  • Celerier, A., Ognard, R., Decorte, L. and Beracochea, D. (2000). Deficits of spatial and non-spatial memory and of auditory fear conditioning following anterior thalamic lesions in mice: comparison with chronic alcohol consumption. European Journal of Neuroscience, 12, 2.575-2.584.
  • Celerier, A., Pierard, C. and Beracochea, D. (2004). Effects of ibotenic acid lesions of the dorsal hippocampus on contextual fear conditioning in mice: comparison with mammillary body lesions. Behavioural Brain Research, 151, 65-72.
  • Conejo, N., López, M., Cantora, R., González-Pardo, H., López, L., Begega, A., Vallejo, G. and Arias, J. L. (2005), Effects of Pavlovian fear conditioning on septohippocampal metabolism in rats. Neuroscience Letters, 373, 94-98.
  • De Vicente Pérez, F. and Díaz-Berciano, C. (2005). Efecto de la dominancia diádica sobre la indefensión aprendida. Psicothema, 17, 292-296
  • Deglise, P., Dacher, M., Dion, E., Gauthier, M. and Armengaud, C. (2003). Regional brain variations of cytochrome oxidase staining during olfactory learning in the honeybee (Apis mellifera). Behavioral Neuroscience, 117, 540-547.
  • Estes, W. K. and Skinner, B. F. (1941). Some quantitative properties of anxiety. Journal of Experimental Psychology, 29, 390-400.
  • Fanselow, M. S. and Poulos, A. M. (2005). The neuroscience of mammalian associative learning. Annual Review of Psychology, 56, 207-234.
  • Fendt, M. and Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743-760.
  • González-Lima, F. and Cada, A. (1994). Cytochrome oxidase activity in the auditory system of the mouse: A qualitative and quantitative histochemical study. Neuroscience, 63, 559-578.
  • Gutiérrez Maldonado, J. and Arbej Sánchez, J. (2005). Alexitimia y amplificación somatosensorial en el transtorno de pánico y en el transtorno de ansiedad generalizada. Psicothema, 17, 15-19
  • Kataoka, Y., Shibata, K., Gomita, Y. and Ueki, S. (1982). The mammillary body is a potential site of antianxiety action of benzodiazepines. Brain Research, 241, 374-377.
  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184.
  • LeDoux, J. E. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neuobiology, 23, 727-738.
  • Liu, S. and Wong-Riley, M. (1995). Disproportionate regulation of nuclear- and mitochondrial-encoded cytochrome oxidase subunit proteins by functional activity in neurons. Neuroscience, 67, 197-210.
  • Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897-931.
  • Maren, S. (2003). What the amygdala does and doesn’t do in aversive learning. Learning and Memory, 10, 306-308.
  • Orsetti, M., Casamenti, F. and Pepeu, G. (1996). Enhanced acetylcholine release in the hippocampus and cortex during acquisition of an operant behavior. Brain Research, 724, 89-96.
  • Poremba, A. and Gabriel, M. (1997). Amygdalar lesions block discriminative avoidance learning and cingulothalamic training-induced neuronal plasticity in rabbits. The Journal of Neuroscience, 17, 5.237-5.244.
  • Poremba, A., Jones, D. and González-Lima, F. (1997). Metabolic effects of blocking tone conditioning on the rat auditory system. Neurobiology of Learning and Memory, 68, 154-171.
  • Poremba, A., Jones, D. and González-Lima, F. (1998a). Classical conditioning modifies cytochrome oxidase activity in the auditory system. European Journal of Neuroscience, 10, 3.035-3.043.
  • Poremba, A., Jones, D. and González-Lima, F. (1998b). Functional mapping of learning-related metabolic activity with quantitative cytochrome oxidase histochemistry. In F. González-Lima (ed.): Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease (pp. 109-144). New York: Plenum Press.
  • Rokers, B., Mercado, E., Allen, M. T., Myers, C. E. and Gluck, M. A. (2002). A connectionist model of septohippocampal dynamics during conditioning: closing the loop. Behavioral Neuroscience, 116, 48-62.
  • Sah, P., Faber, E. S. L., López de Armentia, M. and Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiological Reviews, 83, 803-834.
  • Sanders, M. J., Wiltgen, B. J. and Fanselow, M. S. (2003). The place of the hippocampus in fear conditioning. European Journal of Pharmacology, 463, 217-223.
  • Schafe, G. E. and LeDoux, J. E. (2002). Emotional plasticity. In R. Gallistel (ed.): Stevens’ Handbook of Experimental Psychology, vol. 3: Learning, Motivation and Emotion (pp. 535-561). New York: Wiley.
  • Smith, D. M., Freeman, J. H., Jr., Nicholson, D. and Gabriel, M. (2002). Limbic thalamic lesions, appetitively motivated discrimination learning, and training-induced neuronal activity in rabbits. The Journal of Neuroscience, 22, 8.212-8.221.
  • Vazdarjanova, A. and McGaugh, J. L. (1998). Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proceedings of the National Academies of Sciences USA, 95, 15.003-15.007.
  • Vazdarjanova, A., Cahill, L. and McGaugh, J. L. (2001). Disrupting basolateral amygdala function impairs unconditioned freezing and avoidance in rats. European Journal of Neuroscience, 14, 709-718.
  • Wilensky, A. E., Schafe, G. E. and LeDoux, J. E. (2000). The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. The Journal of Neuroscience, 20, 7.059-7.066.
  • Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171, 11-28.
  • Wong-Riley, M. T. (1989). Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends in Neurosciences, 12, 94-101.
  • Yamashita, K., Kataoka, Y., Miyazaki, A., Shibata, K., Tominaga, K. and Ueki, S. (1989). A key role of the mammillary body in mediation of the antianxiety action of zopiclone, a cyclopyrrolone derivative. Japanese Journal of Pharmacology, 51, 438-442.
  • Zhang, C. and Wong-Riley, M. T. (2000). Depolarizing stimulation upregulates GA-binding protein in neurons: a transcription factor involved in the bigenomic expression of cytochrome oxidase subunits. European Journal of Neuroscience, 12, 1.013-1.023.