Maduración de los astrocitos del hipocampo de la rataposibles implicaciones conductuales

  1. Arias Pérez, Jorge Luis 1
  2. Vallejo Seco, Guillermo 1
  3. Conejo Jiménez, Nélida María 1
  4. González Pardo, Héctor 1
  5. Cimadevilla Redondo, José Manuel
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 2003

Volumen: 15

Número: 2

Páginas: 216-220

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

Maduración de los astrocitos del hipocampo de la rata: posibles implicaciones conductuales. Diversos trabajos han mostrado que la astroglía juega un papel relevante en la fisiología del sistema nervioso central. Sin embargo, aún existen pocos estudios que se hayan centrado en el análisis de la población astroglial durante el desarrollo postnatal y la posible influencia de factores biológicos como el sexo. Empleando métodos estereológicos, se estimó el número total de astrocitos inmunorreactivos a la proteína ácida de la glía fibrilar (GFAP-ir) y su morfología en las áreas CA1 y CA3 del hipocampo de ratas macho y hembra a los 21 y 90 días de edad. El número de astrocitos GFAP-ir se incrementa significativamente con la edad en ambas áreas hipocámpicas en las hembras, pero sólo en el área CA3 en los machos. Además, no se observaron diferencias de género en ambas áreas hipocámpicas a los 21 días de edad, pero sí a los 90 días. Los cambios numéricos y diferencias de género en la población astroglial hipocámpica durante el desarrollo, se discuten en relación con su posible significado funcional.

Referencias bibliográficas

  • Bacci, A., Verderio, C., Pravettoni, E. and Matteoli, M. (1999) The role of glial cells in synaptic function. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1381), 403- 409.
  • Bezzi, P. and Volterra, A. (2001). A neuron-glia signalling network in the active brain. Current Opinion in Neurobiology, 11(3), 387-394.
  • Bignami, A. and Dahl, D. (1977) Specificity of the glial fibrillary acidic protein for astroglia. Journal of Histochemistry and Cytochemistry, 25(6), 466-469.
  • Bimonte, H.A. and Denenberg, V.H. (2000) Sex differences in vicarious trial-and-error behavior during radial arm maze learning. Physiology & Behavior, 68(4), 495-499.
  • Catalani, A., Sabbatini, M., Consoli, C., Cinque, C., Tomassoni, D., Azmitia, E., Angelucci, L. and Amenta, F. (2002). Glial fibrillary acidic protein immunoreactive astrocytes in developing rat hippocampus. Me chanisms of Ageing and Development, 123(5), 481-490.
  • Champillon, P., Roullet, P. and Lassalle, J.M. (1995) Ontogeny of orientation and spatial learning on the radial maze in mice. Developmental Psychobiology, 28(8), 429-442.
  • Chowen, J.A., Azcoitia, I., Cardona-Gómez, G.P. and García-Segura, L.M. (2000). Sex steroids and the brain: lessons from animal studies. Journal of Pediatric Endocrinology and Metabolism, 13(8), 1.045-1.066.
  • Cimadevilla, J.M., González-Pardo, H., López, L., Díaz, F., Cueto, E.G., García-Moreno, L.M. and Arias, J.L. (1999). Sex-related differences in spatial learning during de early postnatal development of the rat. Behavioural Processes, 4, 159-171.
  • Conejo, N.M., González-Pardo, H., Pedraza, C., Navarro, F.F., Vallejo, G., Arias, J.L. (2003). Evidence for sexual difference in astrocytes of adult rat hippocampus. Neuroscience Letters (in press).
  • García-Segura, L.M., Naftolin, F., Hutchison, J.B., Azcoitia, I. and Chowen, J.A. (1999). Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. Journal of Neurobiology, 40(4), 574-584.
  • Gundersen, H.J. and Jensen, E.B. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of Microscopy, 147(3), 229-263.
  • Gundersen, H.J., Bendtsen, T. F., Korbo, L., Marcussen, N., Moller, A., Nielsen, K., Nyengaard, J.R., Pakkenberg, B., Sorensen, F.B. and Vesterby, A. (1988). Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 96(5),379-394.
  • Hajos, F., Halasy, K., Gerics, B., Szalay, F., Michaloudi, E. and Papadopoulos, G.C. (2000). Ovarian cycle-related changes of glial fibrillary acidic protein (GFAP) immunoreactivity in the rat interpeduncular nucleus. Brain Research, 862(1-2), 43-48.
  • He, J., Yamada, K. and Nabeshima, T. (2002). A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats. Neuropsychopharmacology, 26(2), 259-268.
  • He, Z., He, Y.J., Day, A.L. and Simpkins, J.W. (2002). Proestrus levels of estradiol during transient global cerebral ischemia improves the histological outcome of the hippocampal CA1 region: perfusion-dependent and-independent mechanisms. Journal of Neurological Sciences, 193(2), 79-87.
  • Inazu, M., Takeda, H., Ikoshi, H., Sugisawa, M., Uchida, Y. and Matsumiya, T. (2001). Pharmacological characterization and visualization of the glial serotonin transporter. Neurochemistry International, 39(1), 39-49.
  • Jung-Testas, I., Renoir, J.M., Gasc, J.M. and Baulieu, E.E. (1991). Estrogen-inducible progesterone receptor in primary cultures of rat glial cells. Experimental Cell Research, 193(1), 12-19.
  • Laming, P.R., Kimelberg, H. , Robinson, S., Salm, A., Hawrylak, N., Muller,C., Roots, B. and Ng, K. (2000). Neuronal-glial interactions and behaviour. Neuroscience and Biobehavioral Reviews, 24(3) , 295-340 .
  • Ling, E.A. and Leblond, C.P. (1973). Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. Journal of Comparative Neurology, 149(1), 73-81.
  • Magistretti, P.J., Olivier, S. and Martin, J.L. (1993). Regulation of glycogen metabolism in astrocytes: physiological, pharmacological and pathological aspects. In: S. Murphy (Comp.), Astrocytes Pharmacology and function (pp. 243-265). San Diego: Academic Press
  • McCall, M.A., Gregg, R.G., Behringer, R.R., Brenner, M., Delaney, C.L., Galbreath, E.J., Zhang, C.L., Pearce, R.A., Chiu, S.Y. and Messing, A. (1996). Targeted deletion in astrocyte intermediate filament (GFAP) alters neuronal physiology. Proceedings of the National Academy of Sciences USA, 93(13), 6361-6366.
  • Mong, J.A., Kurzweil, R.L., Davis, A.M., Rocca, M.S. and McCarthy, M.M. (1996). Evidence for sexual differentiation of glia in rat brain. Hormones and Behavior, 30(4) , 553-562.
  • Muller, M.B., Lucassen, P.J., Yassouridis, A., Hoogendijk, W.J., Holsboer, F. and Swaab, D.F. (2001). Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. European Journal of Neuroscience, 14(10) , 1.603-1.612.
  • Nixdorf-Bergweiler, B.E., Albrecht, D. and Heinemann, U. (1994). Developmental changes in the number, size, and orientation of GFAP-positive cells in the CA1 region of rat hippocampus. Glia, 12(3), 180-195.
  • O’Keefe, J.A., Li, Y., Burgess, L.H. and Handa, R.J. (1995). Estrogen receptor mRNA alterations in the developing rat hippocampus. Brain Research, Molecular Brain Research, 30(1), 115-124.
  • Ongur, D., Drevets, W.C. and Price, J.L. (1998). Glial reduction in the subgenual prefrontal cortex in mood disorders. Proceedings of the National Academy of Sciences USA, 95(22), 13.290-13.295.
  • Paxinos, G. and Watson, P. (1986). The rat brain in stereotaxic coordinates. 2nd ed Sidney/New York: Academic Press.
  • Pfrieger, F.W. and Barres, B.A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science, 277(5332), 1.684-1.687.
  • Rajkowska, G. (2000). Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biological Psychiatry, 48(8), 766-767
  • Roof, R.L. (1993). The dentate gyrus is sexually dimorphic in prepubescent rats: testosterone plays a significant role. Brain Research, 610(1), 148-151.
  • Roof, R.L. and Havens, M.D. (1992). Testosterone improves maze performance and induces development of male hippocampus females. Brain Research, 572(1-2), 310-313.
  • Roof, R.L. and Stein, D.G. (1999). Gender differences in Morris water maze performance depend on task parameters. Physiology & Behavior , 68(1-2), 81-86.
  • Selemon, L.D., Lidow, M.S. and Goldman-Rakic, P.S. (1999). Increased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure. Biological Psychiatry, 46(2),161-172.
  • Wang, R.F., Hermer, L., Spelke, E.S. (1999). Mechanisms of reorientation and object localization by children: a comparison with rats. Behavioral Neuroscience, 113(3), 475-485.
  • West, M.J. (1993). New stereological methods for counting neurons. Neurobiology of Aging, 14(4), 275-285.
  • West, M.J., Slomianka, L. and Gundersen, H.J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anatomical Records, 231(4), 482-497.