Desarrollo de estrategias de control predictivas de alto rendimiento mediante la incorporación de técnicas de control robusto y de redes neuronales

  1. Méndez Pérez, Juan Albino
Dirigée par:
  1. Leopoldo Acosta Sánchez Directeur/trice

Université de défendre: Universidad de La Laguna

Année de défendre: 1998

Jury:
  1. Lorenzo Moreno Ruiz President
  2. Carmelo Militello Militello Secrétaire
  3. Luis Basañez Villaluenga Rapporteur
  4. Jesús Manuel de la Cruz García Rapporteur
  5. Ezequiel Ballesteros Ramírez Rapporteur

Type: Thèses

Teseo: 66112 DIALNET lock_openRIULL editor

Résumé

En esta tesis se aborda el desarrollo de estrategias de control predictivas con mejores características en cuanto a estabilidad, carga computacional y seguimiento de consignas variables, El algoritmo de control empleado es el controlador predictivo generalizado (GPC). Se diferencian tres partes en el trabajo. En la primera parte se estudian cuestiones relacionadas con la aplicabilidad del GPC. Para ello se ha llevado a cabo el diseño e implementación de una estrategia GPC mejorada sobre un motor de corriente continua. En la segunda parte de la tesis se propone un algoritmo GPC con mejores características en cuanto a estabilidad y, por lo tanto, computacionalmente más eficaz. Para lograr esto se emplean técnicas de control robusto. En la última parte se aborda el problema de la elección acertada de los horizontes de predicción cuando se consideran consignas variables. Para resolver este problema se plantea un esquema basado en redes neuronales que permite la sintonización autómatica del horizonte de predicción en el GPC.