Memoria espacial y expresión de c-fos en núcleo supramamilar, giro cingulado anterior y corteza entorrinal
- Rubio Fernández, Sandra María 1
- Begega Losa, Azucena 1
- Santín Núñez, Luis Javier
- Aguirre, José A.
- Arias Pérez, Jorge Luis 1
- Miranda, Rubén 1
-
1
Universidad de Oviedo
info
ISSN: 0214-9915
Année de publication: 2001
Volumen: 13
Número: 2
Pages: 214-221
Type: Article
D'autres publications dans: Psicothema
Résumé
Memoria espacial y expresión de c-fos en núcleo supramamilar, giro cingulado anterior y corteza entorrinal. Este trabajo se aproxima al estudio de los substratos cerebrales de la memoria espacial en ratas, empleando la expresión celular de la proteína c-Fos. Para ello, se analizó la expresión de la proteína c-Fos después de la ejecución de una tarea de memoria de referencia y otra de trabajo espacial. De este modo, se cuantificó el número de núcleos neuronales c-Fos positivos en varias regiones cerebrales: corteza entorrinal, giro cingulado anterior y núcleo supramamilar. Los resultados mostraron que el entrenamiento espacial en tareas de memoria, incrementa el número de neuronas activadas en la corteza entorrinal (neuronas c-Fos positivas). No se halló una relación clara entre la activación c-fos en el giro cingulado anterior y las demandas de memoria de las tareas. El número de núcleos neuronales c-Fos positivos en las neuronas del núcleo supramamilar, fue mayor en los grupos de memoria de trabajo que en los grupos de memoria de referencia, sugiriendo que las neuronas de este núcleo desempeñan un papel importante en el procesamiento espacial.
Références bibliographiques
- Brennan, P.A., Hancock, D. & Keverne, E.B. (1992). The expression of the immediate-early genes c-fos, egr-1 and c-jun in the accessory olfatory bulb during the formation of an olfatory memory in mice. Neuroscience, 49, 277-284.
- Brito, G., Thomas, G., Davis, B., & Gingold, S. (1982). Prelimbic cortex, mediodorsal thalamus, septum and delayed alternation in rats. Experimental Brain Research, 46, 52-58.
- Brito, G.N.O. & Brito, L.S.O. (1990). Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behavioural Brain Research, 36, 127-146.
- DeBruin, J.P.C., Sánchez-Santed, F., Heinsbroek, R.P.W., Donker, A. & Postmes, P. (1994). A behavioral analysis of rats with damage to the medial prefrontal cortex using the morris water maze: evidence for behavioral flexibility, but not for impaired spatial navigation. Brain Research, 652, 323-333.
- Delatour, B. & Guisquet-Verrier, P. (1996). Prelimbic cortex specific lesions disrupt delayed-variable response tasks in the rat. Behavioral Neuroscience, 110 (6) 1282-1298.
- Dragunow, M. (1996). A role for immediate-early transcription factors in learning and memory. Behavioral Genetics, 26 (3) 293-299.
- Frick, K.M., Baxter, M.G., Markowska, A.L., Olton, D.S. & Price, D.L. (1995) Age-related spatial reference and working memory deficits assessed in the water maze. Neurobiology of Aging, 16 (2) 149-160.
- Fantie, B.D. and Kolb, B. (1990). An examination of prefrontal lesion size and the effects of cortical grafts on performance of the Morris water task by rats. Psychobiology, 18,, 74-80.
- Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. Journal of Neuroscience, 13,1479- 1497.
- García-Moreno, L.M., Santín, L.J., Rubio, S., García, H. & Arias, J.L. (1993). Effects of etanol and diazepam on Ag-NOR neuronal activity in the medial mammillary nucleus. Psicothema , 5(1), 125-134.
- Goodlett,C.R., Nichols, J.M., Halloran, R.W. & West, J.R. (1989). Longterm deficits in water maze spatial conditional alternation performance following retrohippocampal lesions in rats. Behavioural Brain Research, 32, 63-67.
- Granon, S. & Poucet, B. (1995). Medial prefrontal lesions in the rat and spatial navigation: evidence for impaired planning. Behavioral Neuroscience 109 (3) 474-484.
- Granon, S., Vidal, C., Thinus-Blanc, C., Changeux, J.P. & Poucet, B. (1994). Working memory, response selection and processing in rats with medial prefrontal lesions. Behavioral Neuroscience, 108, 883- 891.
- Hardman, R., Evans, D.J., Fellows, L., Hayes, B., Rupniak, H.T., Barnes, J.C. & Higgins, G.A. (1997). Evidence for recovery of spatial learning following entorhinal cortex lesions in mice. Brain Research, 758, 187- 200.
- Heurteaux, C., Messier, C., Destrade, C. & Lazdunski, M. (1993). Memory processing and apamin induce immediate early gene expression in mouse brain. Molecular Brain Research, 18 (1-2) 17-22.
- Jarrad, L.E., Okaichi, H., Steward, O. & Goldschmidt, R. (1984). On the role of hippocampal conections in the performance of the place and cue tasks: Comparisons with damage to hippocampus. Behavioral Neuroscience, 98, 946-954.
- Jones, R.S.G. (1993). Entorhinal-hippocampal connections: a speculative view of their function. Trends Neuroscience, 16, 58-64.
- Kaczmarek, L. (1993). Molecular biology of vertebrate learning: is c-fos a new beginning?. Journal of Neuroscience Research, 34 (4) 377-381.
- Kirk. I. (1998). Frecuency modulation of hippocampal theta by the supra- mammillary nucleus, and other hypothalamo-hippocampal interactions: mechanisms and functional implications. Neuroscience & Biobehavioral Reviews, 22 (2) 291-302.
- Kolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research Review, 8, 65-98.
- Maleeva, N.E., Ivolgina, G.L., Anokhin, K.V. & Limborskaja, S.A. (1989). Analysis of the expression of the c-fos protooncogene in the rat cerebral cortex during learning. Genetica, 25, 1119-1121.
- Morgan, J.I. & Curran, T. (1991). Protooncogene transcription factors and epilepsy. Trends Pharmacology Science, 12, 343-349.
- Morris, R.G.M., Schenk, F., Tweedie, F. & Jarrad, L.E. (1990). Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning, European Journal of Neuroscience, 2, 1016-1028.
- Nagahara, A.H., Otto, T. & Gallagher, M. (1995). Entorhinal-perirhinal lesions impair performance of rats on two versions of place learning in the Morris water maze. Behavioral Neuroscience, 109(1) 3-9.
- Neave, N., Nagle, S. & Aggleton, J.P. (1997). Evidence for the involvement of the mammillary bodies and cingulum bundle in allocentric spatial processing by rats. European Journal of Neuroscience, 9, 941-955.
- Nikolaev, E., Kaminska, B., Tischmeyer, W., Matthies, H. & Kaczmarek, L. (1992). Induction of expression of genes encoding transcription factors in rat brain elicited by behavioral training. Brain Research Bulle tin, 128, 479-484.
- O´keefe, J. & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press, Oxford.
- Olton, D.S. & Papas, B.S. (1979). Spatial memory and hippocampal function. Neuropsychologia, 17, 669-682.
- Olton, D.S. & Samuelson, R.J. (1976). Remembrance of places passed: spatial memory in rats. Journal of Experimental Psychology, 2, 97-116.
- Olton, D.S. (1978). The function of septo-hippocampal connections in spa tially organized behaviour . In Elliot, K. and Whelan, J. (eds), Funtions of the septo-hippocampal system. Elsevier, Amsterdam, 327-349 pp.
- Paxinos, G. & Watson, C. (1997). The rat brain in stereotaxic coordinates (Compact 2th ed.). Academic Press, London.
- Paylor, R., Johnson, R.S., Papaioannou, V., Spiegelman, B.M. & Wehner, J.M. (1994). Behavioral assessment of c-fos mutant mice. Brain Research, 651 (1-2) 275-282.
- Quirk, G.J., Muller, R.U., Kubie, J.L. & Ranck, J.B.(1992). The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. Journal of Neuroscience, 12, 1945- 1963.
- Radulovic, J., Kammermeier, J. & Spiess, J. (1998). Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition and unconditioned stimulus preexposure. Journal of Neuroscience, 18 (18) 7452-7461.
- Rose, S.P. (1991). How chicks make memories: the cellular cascade from c-fos to dendritic remodelling. Trends in Neuroscience, 14 (9) 390-397.
- Rose, S.P. (1996). Cell adhesion molecules and the transition from short to long-term memory. Journal Physiology Paris, 90 (5-6) 387-391.
- Santín, L.J., Rubio, S., Begega, A. & Arias, J.L. (1999a). Effects of mammillary body lesions on spatial reference and working memory tasks. Behavioural Brain Research,102, 137-150.
- Santín, L.J., Rubio, S., Begega, A. & Arias, J.L. (1999b). Non-effects of mamillary body lesions on spontaneous alternation: pre and postoperative study. Behavioural Processes, 44, 323-329.
- Sheng, M. & Greenberg, M.E. (1990). The regulation and function of c-fos and other immediately early genes in the nervous system. Neuron, 4, 477-485.
- Shibata, H. (1993). Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. Journal of Comparative Neurology, 330, 333-342.
- Struhl, K. (1991). Mechanisms for diversity in gene expression patterns. Neuron, 7, 177-181.
- Swanson, L.W. (1981). A direct projection from Ammons´s horn to prefrontal cortex in the rat. Brain Res., 217, 150-154.
- Tamamaki, N. & Nojyo, Y. (1993). Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus, 3, 471-480.
- Van Eden, C.G., Lamme, V.A.F. & Uylings, H.B.M. (1992). Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde an anterograde tracer study. European Journal of Neuros cience, 4, 77-97.
- West, M.J. (1999). Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends in Neuroscience, 22, 51-61.
- Young, H.L., Stevens, A.A., Converse, E. & Mair, R.G. (1996). A comparison of temporal decay in place memory tasks in rats (rattus norvegicus) with lesions affecting thalamus, frontal cortex or the hippocampal system. Behavioral Neuroscience, 110 (6) 1244-1260.
- Zhu, X.O., Brown, M.W., McCabe, B.J. & Aggleton, J.P. (1995). Effects of the novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain. Neuroscience, 69 (3) 821-829.