Medidas de isotonía. Aplicaciones a la regresión no paramétrica
- Juan Antonio Cuesta Albertos Directeur/trice
Université de défendre: Universidad de Cantabria
Année de défendre: 1991
- Miguel Martín Díaz President
- Eduardo Casas Rentería Secrétaire
- Wenceslao González Manteiga Rapporteur
- Carlos Matrán Bea Rapporteur
- Pedro Ángel Gil Álvarez Rapporteur
Type: Thèses
Résumé
En la tesis se aborda, en primer lugar, el problema de medir el crecimiento de una funcion h, que se presupone conocida, respecto a cierta probabilidad mi, desconocida, a partir de los valores tomados por un numero finito de variables aleatorias independientes cuya distribucion es precisamente mi, posteriormente, se aplican los resultados obtenidos para encontrar medidas del crecimiento de la funcion de regresion de un par de variables aleatorias reales a partir de una muestra aleatoria simple del mismo. En esta situacion la funcion de interes se considera tambien desconocida. El criterio de proximidad entre funciones manejado abarca todas las lp-distancias con p en el intervalo (1. ). Cuando la funcion h es conocida se demuestra la consistencia de las medidas respecto a la lp-distancia de h al conjunto de las funciones crecientes, sin imponer ninguna restriccion a h. En el caso en que h es la funcion de regresion y entonces desconocida, las medidas se basan en el estimador por kernel de la misma, obteniendose tambien su consistencia bajo aquellas hipotesis que permiten asegurar un buen comportamiento del estimador. Asimismo, se encuentran tambien estimadores consistentes de las correspondientes mejores lp-aproximaciones crecientes respecto a mi en ambos contextos. En los casos p=1 y p=infinito, es necesario exigir ciertas hipotesis de continuidad adicionales a la funcion. Finalmente aparecen en el trabajo un conjunto de resultados de interes independiente relativos al comportamiento del estimador por kemel de la regresion y a la unicidad de las l1-aproximaciones.