Análisis matemático y numérico de las ecuaciones de Maxwell cuasiestáticas
- Salim Meddahi Bouras Director
Universidad de defensa: Universidad de Oviedo
Fecha de defensa: 10 de febrero de 2006
- José Javier Valdés García Presidente/a
- Francisco Javier Sayas González Secretario/a
- Norbert Heuer Vocal
- Alberto Valli Vocal
- Alfredo Bermúdez de Castro López-Varela Vocal
Tipo: Tesis
Resumen
En esta tesis diseñamos y analizamos un nuevo método numérico para resolver las ecuaciones de Maxwell cuasiestaticas planteadas en R3, Dicho problema modelo se deduce de las ecuaciones de Maxwell cuando se desprecian las corrientes de desplazamiento y su uso esta muy generalizado en ingeniería eléctrica. En una primera etapa, suponemos que los campos (magnético y eléctrico) tienen un comportamiento sinusoidal respecto al tiempo y que el dominio que representa al conductor es simplemente conexo. En esta situación, obtenemos una formulación variacional planteada en la región conductora. Incorporamos la información del campo lejano a nuestra formulación mediante ecuaciones integrales sobre la frontera del dominio computacional. Proponemos para esta formulación un esquema de Galerkin basado en la aplicación simultánea del método de elementos finitos de arista de Nedelec y del método de elementos de contorno. Probamos que tanto el problema continuo como el discreto están planteados. Demostramos que el esquema numérico tiene una convergencia asintótica de orden óptimo en función del parámetro de discrtización. Obtenemos resultados numéricos que avalan nuestras aserciones teóricas. A continuación consideramos el caso de un conductor no simplemente conexo. En este caso, introducimos un dominio computacional acotado que contiene la región de interés (el conductor). Este involucra una restricción lineal sobre el campo magnético, que tratamos introduciendo un multiplicador de lagrange. Obtenemos con esta técnica una formulación variacional de tipo mixto que aproximamos mediante un método de Galerkin que combina elementos finitos de Nedelec y de Raviart-Thomas. Aquí también demostramos que las formulaciones continua y discreta tienen solución única y proporcionamos un análisis de convergencia del método número. Finalmente consideramos el problema de evolución en tiempo sin restricciones topológicas sob