Técnicas para la predicción espacial de zonas susceptibles a deslizamientos

  1. Florez García, Andrés Camilo 1
  2. Pérez Castillo, José Nelson 1
  1. 1 Universidad Distrital Francisco José de Caldas
    info

    Universidad Distrital Francisco José de Caldas

    Bogotá, Colombia

    ROR https://ror.org/02jsxd428

Journal:
Avances: Investigacion en Ingeniería

ISSN: 2619-6581 1794-4953

Year of publication: 2019

Volume: 16

Issue: 1

Pages: 20-48

Type: Article

DOI: 10.18041/1794-4953/AVANCES.1.5188 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Avances: Investigacion en Ingeniería

Abstract

The implemented techniques for the prediction of landslide-prone areas have been effective at a certain degree. However, many approaches tend to face difficulties to determine non-linear landslides triggering factors, due to the absence of Spatio-temporal dependency structures that evaluate spatial effects as autocorrelation and heterogeneity when describing complex problems. Therefore, results understanding may not be precise and lead to a less reliability condition. The main objective of this article is to provide a solid document that offers both, a general and a detailed perspective about Spatial Prediction Techniques. Finally, we propose an innovative methodology that allows us to use automatic learning and spatial statistics to improve the predictive performance of landslide-prone areas.

Bibliographic References

  • E. Aristizábal, T. González, J. D. Montoya, J. I. Vélez, H. Martínez y A. Guerra, “Análisis de umbrales empíricos de lluvia”, EIA, pp. 95-111, 2011.
  • G.-S. Debarati, P. Hoyois y R. Below, Annual Disaster Statistical Review 2009. The numbers and trends, Bruselas: Centre for Research on the Epidemiology of Disasters, 2015.
  • K. Sassa y Ž. Arbanas, “Landslides: Journal of the International Consortium on Landslides”, Advancing Culture of Living with Landslides, pp. 257-267, 2017.
  • L. G. Stefano y F. Guzzetti, “Landslides in a changing climate”, Earth Sci. Rev., pp. 2-42, 2016.
  • D. Salciarini, E. Volpe, S. A. Kelley, L. Brocca, S. Camici, G. Fanelli y C. Tamagnini, “Modeling the effects induced by the excepted climatic trends on landslide activity at large scale”, Proc. Eng, pp. 541-545, 2016.
  • H. Shahabi, S. Khezri, B. Ahmad y M. Hashim, “Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models”, Catena, pp. 55-70, 2014.
  • L. Montanarella, “The EU thematic strategy on soil protection. In land degradation in Central and Eastern Europe”, Office for Official Publications of the European Communities, Luxembourg, 2003.
  • D. Alexander, “On the causes of landslides: Human activities, Perception, and Natural Processes”, Environ. Geol. Water, pp. 165-179, 1992.
  • S.-B. Bai, J. Wang, G.-N. Lü, P.-G. Zhou, S.-S. Hou y S.-N. Xu, “GIS-based and data-driven bivariate landslide-susceptibility mapping in the Three Gorges Area, China”, Pedosphere, pp. 14-20, 2009.
  • R. Anbalagan, “Landslide hazard evaluation and zonation mapping in mountainous terrain.”, Eng. Geol., pp. 269-277, 1992.
  • A. Pachauri y M. Pant, “Landslide hazard mapping based on geological attributes”, Eng. Geol., pp. 81-100, 1992.
  • E. A. Castellanos Abella y V. W. Cees J., “Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba”, Geomorphology, pp. 453-466, 2008.
  • A. Quesada Román y G. Barrantes Castillo, “Modelo morfométrico para determinar áreas susceptibles a procesos de ladera”, Invest. Geog., vol. 2017, pp. 37-48, 2017.
  • F. Aceves Quesada, G. Legorreta Paulín y Y. Álvarez Ruiz, “Cartografía geomorfológica para el inventario de procesos gravitacionales”, Bol. Soc. Geol. Mex., vol. 66, n.º 2, pp. 329-342, 2014.
  • A. Quesada Román y G. Barrantes Castillo, “Procesos de ladera cosísmicos del terremoto de Cinchona (Costa Rica) del 8 de enero de 2009 (Ms= 6,2)”, Cuad. Geog., vol. 25, n.º 1, pp. 217-232, 2016.
  • H. Pourghasemi, M. Mohammady y B. Pradhan, “Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin”, CATENA, pp. 71-84, 2012.
  • B. Pham, B. Pradhan, D. Tien Bui, I. Prakash y M. Dholaki, “A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area”, Environ. Model Softw., pp. 240-250, 2016.
  • B. T. Pham, D. Tien Bui, I. Prakash y M. Dholakia, “Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS”, Catena, vol. 149, pp. 52-63, 2017.
  • H. Raiffa y R. Schlaifer, Applied statistical decision theory, Boston: Harvard University Press, p. 356, 1961.
  • G. A. Griffiths, “stochastic prediction in geomorphology using bayesian inference models”, Math. Geol., pp. 66-74, 1982.
  • S.-Q. Wang y D. J. Unwin, “Modelling landslide distribution on loess soils in China: an investigation”, Int. J. Geograph. Inform. Syst., pp. 391-405, 1992.
  • A. Carrara, M. Cardinali y F. Guzzetti, “Uncertainty in assessing landslide hazard and risk”, ITC J., pp. 172-183, 1992.
  • C.-J. F. Chung y A. G. Fabbri, “The representation of geoscience information for data integration”, Nonrenewable Resources, pp. 122-139, 1993.
  • C.-J. F. Chung y A. G. Fabbri, “Probabilistic prediction models for landslide hazard mapping”, Photogramm. Eng. Rem. S., pp. 1389-1399, 1999.
  • S. Lee, J. Choi y K. Min, “Landslide susceptibility analysis and verification using the Bayesian probability model”, Environ. Geol., pp. 120-131, 2002.
  • B. Neuhäuser y B. Terhorst, “Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany)”, Geomorphology, pp. 12-24, 2007.
  • H. R. Pourghasemi, M. Mohammady y B. Pradhan, “Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran”, Catena, pp. 71-84, 2012.
  • P. Aleotti y R. Chowdhury, “Landslide hazard assessment: summary review and new perspectives”, Bulletin of Eng. Geol. and the Environment, pp. 21-44, 1999.
  • A. Nandi y A. Shakoor, “A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses”, Eng. Geol., pp. 11-20, 2010.
  • C. van Westen, Statistical landslide hazard analysis, ITC Publication, 1997.
  • P. Rautela y R. Lakhera, “Landslide risk analysis between Giri and Ton Rivers in Himalaya (India)”, Int. J. Appl. Earth Obs., pp. 153-160, 2000.
  • A. Lulseged, Y. Hiromitsu y U. Norimitsu, “Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan”, Landslides, pp. 73-81, 2004.
  • L. S. Mehmet y Vedat Doyuran, “Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey”, Eng. Geol., pp. 303-321, 2004.
  • L. S. Mehmet y V. Doyuran, “A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate”, Environ. Geol., pp. 665-679, 2004.
  • T. Kavzoglu, K. Emrehan y C. Ismail, “An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district”, Nat. Hazards, pp. 471-496, 2015.
  • D. Kubwimana, L. Ait Brahim, M. Bousta, O. Dewitte, A. Abdelouafi y T. Bahaj, “Landslides susceptibility assessment using AHP method in Kanyosha watershed (Bujumbura-Burundi): Urbanisation and management impacts”, de MATEC Web of Conferences, Rabat, 2018.
  • A. Quesada Román y S. Feoli-Boraschi, “Comparación de la metodología Mora-Vahrson y el método morfométrico para determinar áreas susceptibles a deslizamientos en la microcuenca del río Macho, Costa Rica”, Rev. Geog. Am. Centr., vol. 61, pp. 17-45, 2018.
  • A. Quesada-Román y J. J. Zamorano Orozco, “Peligros geomorfológicos en Costa Rica: Cuenca Alta del Río General”, Anu. Instit. Geociênc., vol. 41, n.º 3, pp. 239-251, 2018.
  • A. Yalcin, “GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations”, CATENA, pp. 1-12, 2008.
  • G. Demir, A. Mustafa y A. Aykut, “A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods”, Nat. Hazards, pp. 1481-1506, 2013.
  • S. Nader, A. Kassim y L. Min Lee, “Susceptibility assessment of shallow landslides in Hulu Kelang area, Kuala Lumpur, Malaysia using analytical hierarchy process and frequency ratio”, Geotech. Geol. Eng., pp. 43-57, 2015.
  • A. Nandi y A. Shakoor, “A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses”, Eng. Geol., pp. 11-20, 2009.
  • C. Yilmaz, T. Topal y S. Mehmet, “GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey)”, Environ. Earth Sci., pp. 2161-2178, 2012.
  • E. López González y M. Ruiz Soler, “Análisis de datos con el Modelo Lineal Generalizado. Una aplicación con R”, Rev. Esp. Pedagog., pp. 59-80, 2011.
  • M. Ato García, Modelo lineal generalizado, Documenta Universitaria, 2005.
  • A. Carrara, “Multivariate models for landslide hazard evaluation”, Math.Geol., pp. 403-426, 1983.
  • D. W. Hosmer y S. Lemeshow, Applied Logistic Regression, Ohio: John Wiley & Sons, 2000.
  • K. Lange, Mathematical and Statistical Methods for Genetic Analysis, Los Ángeles: Springer, 2002.
  • B. Pradhan, “Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches”, J. Indian Soc. Remote, pp. 301-320, 2010.
  • B. Pradhan, “Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia”, Adv. Space Res., pp. 1244-1256, 2010.
  • S. Bai, G. Lü, W. Jian, Z. Pinggen y D. Liang, “GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China”, Environ. Earth Sci., pp. 139-149, 2011.
  • O. F. Althuwaynee, B. Pradhan, P. Hyuck-Jin y H. L. Jung, “A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping”, Catena, pp. 21-36, 2014.
  • H. Hasali, R. Rangali, N. L. Deshapriya y L. Samarakoon, “Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka)”, Procedia Eng., pp. 1046-1053, 2018.
  • S. Lee, “Application of Likelihood Ratio and Logistic Regression Models to Landslide Susceptibility Mapping Using GIS”, Environ. Manage., pp. 223-232, 2004.
  • L. Ayalew y H. Yamagishi, “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan”, Geomorphology, pp. 12-31, 2005.
  • J. Mathew, . V. K. Jha y G. S. Rawat, “Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method”, Landslides, pp. 17-26, 2009.
  • S. Lee, “Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data”, Int. J. Remote. Sens., pp. 1477-1491, 2005.
  • O. Adnan y A. Tolga, “A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey”, J. Asian Earth Sci., pp. 1-18, 2013.
  • D. Tien Bui, O. Lofman, R. Inge y O. Dick, “Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression”, Nat. Hazards, pp. 1413-1444, 2011.
  • J. Hanley y B. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve”, Radiology, pp. 29-36, 1982.
  • E. Yesilnacar y T. Topal, “Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey)”, Eng. Geol., pp. 251-266, 2005.
  • H. R. Pourghasemi y N. Kerle, “Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran”, Environ. Earth Sci., pp. 75-185, 2016.
  • H. Düzgün y S. Kemeç, “Spatial regression and geographically weighted regression for spatial prediction”, en The Encyclopedia of Geographical Information, s. d., 2008.
  • A. Erener, H. Sebnem y B. Düzgün, “Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway)”, Landslides, pp. 55-68, 2010.
  • A. Erener, H. Sebnem y B. Düzgün, “Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway)”, Landslides, pp. 7-55, 2010.
  • T. Hastie y R. Tibshirani, Generalized additive models, Chapman, 1990.
  • J. N. Goetz, R. H. Guthrie y A. Brenning, “Integrating physical and empirical landslide susceptibility models using generalized additive models”, Geomorphology, pp. 376-386, 2011.
  • N. R. Regmi, G. R. John y J. D. Vitek, “Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA”, Geomorphology, pp. 172-187, 2010.
  • S. Abeare, Comparisons of boosted regression tree, GLM, and GAM performance in the standardization of yellowfin tuna catchrate data from the Gulf of Mexico longline fishery, 2009.
  • N. Cressie, Statistics for Spatial Data, Revised Edition, New York: John Wiley & Sons, 1991.
  • B. D. Ripley, “Modelling spatial patterns”, J. Royal Stat. Soc. Series B (Methodological), vol. 39, n.º 2, pp. 172-212, 1977.
  • D. G. Krige, “A Statistical Approaches to Some Basic Mine Valuation Problems on the Witwatersrand”, J. Chem., Metall. Min. Soc. South Afr., pp. 119-139, 1951.
  • G. Matheron, “Traité de géostatistique appliquée”, de Tome I: Mémoires du Bureau de Recherches Géologiques et Miniéres, Paris: Editions, 1962, p. 333.
  • J. Chacón, C. Irigaray, T. Fernández y R. El Hamdouni, “Engineering geology maps: landslides and geographical information systems”, Bull. Eng. Geol. Environ., pp. 341-411, 2006.
  • E. Canli y T. Glade, “Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems”, World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences, 2017.
  • M. Tuhua, L. Changjiang, L. Zhiming y B. Qiyun, “Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China”, Geomorphology, pp. 193-206, 2015.
  • C.-W. Chen, H. Saito y T. Oguchi, “Rainfall intensity–duration conditions for mass movements in Taiwan”, Prog. Earth Planet. Sci., pp. 2-14, 2015.
  • A. M. Ramos-Cañón, M. G. Trujillo-Vela, L. F. Prada-Sarmiento, “Niveles umbrales de lluvia que genenran deslizamientos: una revisión crítica”. Cienc. Ing. Neogranad., 61-80, 2015.
  • L. D. Miguel Fonseca, L. João Luiz, F. F. Elpídio Inácio, R. D. S. Gerson, M. F. Williams Pinto, T. S. Adriana Maria Rocha, “Variability in soil physical properties in landslide-prone areas”, Acta Scientiarum. Agronomy, pp. 109-118, 2017.
  • L. Lombardo, H. Bakka, H. Tanyas, C. van Westen, M. Mai y H. Raphael, “Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides”, de AMCS/STAT Graduate Seminar, New York, 2018.
  • C. D. Iswar, Spatial Statistical modelling for assesing landslide hazard and vulnerability, Twente: University of Twente, 2011.
  • A. Erener, H. S. B. Düzgün, “Landslide susceptibility assessment: what are the effects of mapping unit and mapping method?”, Environ. Earth Sci., pp. 859-877, 2012.
  • S. Park, J. Kim, “A comparative analysis of landslide susceptibility assessment by using global and spatial regression methods in Inje Area, Korea”, J. Korean Soc. Surv., Geode., Photogramm. Cartogr., pp. 579-587, 2015.
  • H. Hong, B. Pradhan, M. I. Sameen, C. Wei, C. Xu, “Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China)”, Geomat. Nat. Haz. Risk, pp. 1997-2022, 2017.
  • L. Anselin, Spatial Econometrics: Methods and Models, Dordrecht: Kluwer, 1988, pp. 32-33.
  • R. Dubin, “Estimation of regression coefficients in the presence of spatially autocorrelated error terms”, Rev. Econ. Statist., pp. 466-474, 1988.
  • R. Dubin, “Spatial autocorrelation and neighborhood quality”, Reg. Sci. Urban Econ., pp. 433-452, 1992.
  • L. Anselin, “Local indicators of spatial association—LISA”, Geogr. Anal., pp. 93-115, 1995.
  • A. Fotheringham, “Trends in quantitative methods I: stressing the local”, Progr. Hum. Geogr., pp. 261-272, 1997.
  • R. K. Pace, “Performing large spatial regressions and autoregressions”, Econ. Letters, pp. 283-291, 1997.
  • C. Brunsdon, A. Fotheringham y M. Charlton, “Spatial nonstationarity and autoregressive models.”, Environ. Plann., pp. 957-973, 1998.
  • C. Brunsdon, A. Fotheringham y M. Charlton, “Geographically weighted regression: A method for exploring spatial nonstationarity”, Geogr. Anal., pp. 281-298, 1996.
  • T. Feuillet, J. Coquin, D. Mercier, E. Cossart, A. Decaulne, H. Páll Jónsson y S. Þorsteinn, “Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space?”, Prog. Phys. Geogr. Earth Environ., pp. 354-377, 2014.
  • S. Park y J. Kim, “A comparative analysis of landslide susceptibility assessment by using global and spatial regression methods in Inje Area, Korea”, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, pp. 579-587, 2015.
  • Y. Xianyu, W. Yi, N. Ruiqing y H. Youjian, “A combination of geographically weighted regression, particle swarm optimization and support vector machine for landslide susceptibility mapping: a case study at Wanzhou in the Three Gorges Area, China”, Int. J. Environ. Res. Public Health, p. 487, 2016.
  • S. Sua, X. Rui y Z. Yuan, “Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression”, App. Geogr., pp. 360-375, 2012.
  • M. Marjanović, K. Miloš, B. Bajat y V. Voženílek, “Landslide susceptibility assessment using SVM machine learning algorithm”, Eng. Geol., pp. 225-234, 2011.
  • T. M. Mitchell, Machine Learning, New York: McGraw Hill, 1997.
  • O. Korup y A. Stolle, “Nat. Hazards explained. Landslide prediction from machine learning”, Geology Today, pp. 26-33, 2014.
  • I. Basheer y M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application”, J. Microbiol. Methods, pp. 3-31, 2000.
  • B. Pradhan y S. Lee, “Landslide susceptibility assessment and factor affect analysis: back-propagatioon artificial neural networks and their comparision with frequency ratio and bivariate logistic regression modelling.”, Environ. Model. Softw., pp. 747-759, 2010.
  • S. Park, C. Chuluong y K. Byungwoo, “Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea”, Environ. Earth Sci., pp. 1443-1464, 2013.
  • V. Nourani, B. Pradhan y H. Ghaffari, “Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models”, Nat. Hazards, pp. 523-547, 2014.
  • D. Jie, H. Yamagishi, H. R. Pourg, A. P. Yunus, S. Xuan, Y. Xu y Z. Zhongfan, “An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan”, Nat. Hazards, p. 1749–1776, 2015.
  • M. Zare, H. R. Pourghasemi, M. Vafakhah y B. Pradhan, “Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms”, Arab. J. Geosci., pp. 1-16, 2012.
  • H. Chen, Z. Zeng y H. Tang, “Landslide deformation prediction based on recurrent neural network”, Neural Process. Lett., pp. 169-178, 2015.
  • M. R. Mezaal, B. Pradhan, M. I. Sameen, H. Z. Mohd Shafri y Z. Md Yusoff, “Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data”, App. Sci., pp. 2-20, 2017.
  • V. Vapnik, The Nature of Statistical Leaning Theory, New York: Springer-Verlag, 1995.
  • V. Vapnik, The Nature of Statistical Learning, New York: Springer, 2000.
  • J. Broséus, M. Vallat y P. Esseiva, “Multi-class differentiation of cannabis seedlings in a forensic context”, Chemom. Intell. Lab. Syst., p. 343–350, 2011.
  • M. Marjanović, M. Kovačević, B. Bajat y V. Voženílek, “Landslide susceptibility assessment using SVM machine learning algorithm”, Eng. Geol., pp. 225-234, 2011.
  • H. Hong, B. Pradhan, D. T. Bui, C. Xu, A. M. Youssef y W. Chen, “Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China)”, J. Geom., Nat. Hazards Risk, pp. 1-26, 2017.
  • B. Pradhan y M. I. Sameen, “Manifestation of SVM-Based Rectified Linear Unit (ReLU) Kernel Function in Landslide Modelling”, Space Sci. Commun. Sustainability, pp. 185-195, 2018.
  • W. Chen, H. R. Pourghasemi, A. Kornejadyc y N. Zhanga, “Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques”, Geoderma, pp. 314-327, 2017.
  • H. R. Pourghasemia y O. Rahmat, “Prediction of the landslide susceptibility: Which algorithm, which precision?”, Catena, pp. 177-192, 2018.
  • L. Zadeh, “Fuzzy sets”, IEEE Inf. Control, pp. 338-353, 1965.
  • S. Lee, “Application and verification of fuzzy algebraic operators to landslide susceptibility mapping”, Environ. Geol., pp. 615-623, 2007.
  • H.-J. Oh y B. Pradhan, “Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area”, Comput. Geosci., pp. 1264-1276, 2011.
  • B. Dixon, “Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis”, J. Hydrol., pp. 17-38, 2005.
  • K. Polat y S. Günes, “A hybrid medical decision making system based on principles component analysis, k-NN based weighted pre-processing and adaptive neuro-fuzzy inference system”, Digital Signal Process., pp. 913-921, 2006.
  • S. Lee, J. Choi y H. Oh, “Landslide susceptibility mapping using a neuro-fuzzy”, de American Geophysical Union, Fall Meeting, Daejeon, 2009.
  • M. H. Vahidnia, A. A. Alesheikh, A. Abbas y F. Hosseinali, “A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping”, Comput. Geosci., vol. 36, n.º 9, pp. 1101-1114, 2010.
  • D. P. Kanungo, M. K. Arora, S. S y R. P. Guptac, “A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas”, Eng. Geol., vol. 85, pp. 347-366, 2006.
  • I. Yilmaz, “Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine”, Environ. Earth Sci., vol. 61, pp. 821-836, 2010.
  • W. Chen, J. Peng, H. Hong, H. Shahabi, B. Pradhan, J. Liu, A.-X. Zhu, X. Pei y Z. Duan, “Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China”, Scie. Total Environ., pp. 112-1135, 2018.
  • J. Soni, U. Ansari, D. Sharma y S. Soni, “Predictive data mining for medical diagnosis: an overview of heart disease prediction”, Int. J. Comput. Appl., pp. 43-48, 2011.
  • P. Bhargavi y S. Jyothi, “Applying naive Bayes data mining technique for classification of agricultural land soils”, Int. J. Comput. Sci. Network Security, pp. 117-122, 2009.
  • X. Wu, V. Kumar, R. J. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand y D. Steinberg, “Top 10 algorithms in data mining”, Knowl. Inf. Syst., pp. 1-37, 2008.
  • P. Tsangaratos y I. Llia, “Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size”, Catena, pp. 164-179, 2016.
  • W. Chen, X. Xie, J. Wang, B. Pradhan, H. Hong, D. Tien Bui, Z. Duan y J. Ma, “A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility”, Catena, pp. 147-160, 2017.
  • I. H. Witten, E. Frank y M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques (The Morgan Kaufmann Series in Data Management Systems), Burlington: Morgan Kaufmann, 2011.
  • D. T. Bui, T. A. Tuan, H. Klempe, B. Pradhan y I. Revhaug, “Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree”, Landslides, pp. 117-136, 2016.
  • L. Breiman, “Random Forests”, Mach. Learn., pp. 5-32, 2001.
  • R. Genuer, J.-M. Poggi y C. Tuleau-Malot, “Variable selection using random forests”, Pattern Recognit. Lett., pp. 2225-2236, 2010.
  • J. N. Goetz, A. Brenning, H. Petschko y P. Leopold, “Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling”, Comput. Geosci., pp. 1-11, 2015.
  • K. Zhang, X. Wu, R. Niu, K. Yang y Z. Lingran, “The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China”, Environ. Earth Sci., pp. 1-20, 2017.
  • A. M. Youssef, H. R. Pourghasemi, Z. S. Pourtaghi y M. M. Al-Katheeri, “Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia”, Landslides, pp. 1-25, 2015.
  • B. Thai Pham y I. Prakash, “Machine Learning Methods of Kernel Logistic Regression and Classification and Regression Trees for Landslide Susceptibility Assessment at Part of Himalayan Area, India”, Indian J. Sci. Tech., pp. 1-10, 2018.
  • J. F. Díaz Sepúlveda, «Comparación entre árboles de regresión CART y regresión lineal» M.Sc. tesis, Universidad Nacional de Colombia, Bogotá, 2012.
  • B. Pham Thai, K. Khosravi y I. Prakash, “Application and comparison of decision Tree-Based Machine Learning methods in Landslide susceptibilitty assessment at Pauri Garhwal area, Uttarakhand, India”, Environ. Sci. Processes Impacts, pp. 1-34, 2017.
  • Á. Felicísimo, A. Cuartero, J. Remondo y E. Quirós, “Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study”, Landslides, pp. 175-189, 2012.
  • L.-J. Wang, M. Guo, K. Sawada, J. Lin y J. Zhang, “Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models”, Catena, pp. 271-282, 2015.
  • S. Abeare, Comparisons of Boosted Regression Tree, GLM, and GAM performance in the Standardization of Yellowfin Tuna Catch-Rate Data from the Gulf of Mexico Lonline Fishery, Louisiana: Louisiana State University, 2009.
  • H. R. Pourghasemi y M. Rossi, “Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods”, Theor. Appl. Climatol., pp. 1-25, 2016.
  • P. Vorpahl, H. Elsenbeer, M. Mär y B. Schröder, “How can statistical models help to determine driving factors of landslides?”, Ecol. Model., pp. 27-39, 2012.
  • H. R. Pourghasemi, Z. T. Yansari, P. Panagos y B. Pradhan, “Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016)”, Arab. J. Geosci., pp. 2-12, 2018.
  • W. Chen, H. Shahabi, A. Shirzadi, T. Li, C. Guo, H. Hong, W. Li, D. Pan, J. Hu, M. Ma, M. Xi y B. B. Ahmad, “A novel ensemble approach of bivariate statistical based logistic model tree classifier for landslide susceptibility assessment”, Geocarto International, pp. 1-32, 2018.
  • L. Peng, R. Niu, B. Huang, X. Wu, Y. Zhao y R. Ye, “Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China”, Geomorphology, pp. 287-301, 2014.
  • D. Tien Bui, B. Pradhan, I. Revhaug, D. B. Nguyen, H. V. Pham y B. Quy Ngoc, “A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam)”, Geomat. Nat. Hazards Risk, pp. 13-36, 2013.
  • O. F. Althuwaynee, B. Pradhan, H.-J. Park y J. H. Lee, “A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping”, Catena, pp. 21-36, 2014.
  • O. F. Althuwaynee, B. Pradhan, H.-J. Park y J. H. Lee, “A novel ensemble decision tree-based CHi-squared automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping”, Landslides, pp. 1063-1078, 2014.
  • A. M. Youssef, P. Biswajeet, M. N. Jebur y H. M. El-Harbi, “Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia”, Environ. Earth Sci., pp. 1-17, 2014.
  • W. Black, “Spatial interaction modeling using artificial neural networks”, J. Transp. Geogr., vol. 3, n.º 3, pp. 159-166, 1995.
  • M. M. Fischer, “Methodological chanlleges in Neural spatial interaction modelling: The issue of model selection”, Spat. Econ. Sci., pp. 89-101, 2000.
  • M. Hong, J. Kim y S. Jeong, “Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall”, Landslides, pp. 523-534, 2017.
  • T. Cheng y J. Wang, “Accommodating spatial associations in DRNN for space–time analysis”, Comput. Environ. Urban Syst., pp. 409-418, 2009.
  • M. Deng, W. Yang, Q. Liu, R. Jin, F. Xu y Y. Zhang, “Heterogeneous space - time aritifical neural network for space - time series prediction”, Transact. GIS, pp. 1-19, 2017.
  • T. Cheng, J. Haworth, B. Anbaroglu, T. Garavig y J. Wang, Spatiotemporal Data Mining, Berling: Springer, 2014, pp. 1173-1193.
  • T. Cheng y J. Wang, “Accommodating spatial associations in DRNN for space–time analysis.”, Comput. Environ. Urban Syst., pp. 409-418, 2009.
  • M. M. Fischer y M. Reismann, “A Methodology for Neural Spatial Interaction Modeling.”, Geogr. Anal., pp. 207-228, 2002.
  • S. Openshaw, “Modelling spatial interaction using a neural net”, en Geographic information systems, spatial modelling, and policy evaluation, Berlin: Springer-Verlag, 1993, pp. 147-164.
  • Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang y T. Li, “Forecasting fine-grained air quality based on big data”, en Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, 2015.
  • S. Gopal, W. Liu y C. Woodcock, “Visualization based on the fuzzy artmap neural network for mining remotely sensed data”, en Geographic Data Mining and Knowledge Discovery, Bristol: Taylor and Francis, pp. 315-336, 2001.
  • Aravind y Koufakou, “Cross-validation in fuzzy ARTMAP for large databases”, Neural Network, pp. 1279-1291, 2011.
  • M. Deng, W. Yang, Q. Liu, R. Jin, F. Xu y Y. Zhang, “Heterogeneous Space–Time Artificial Neural Networks for space - time series prediction”, Transact. GIS, pp. 1-19, 2017.
  • W. Lin, “Earthquake‐induced landslide hazard monitoring and assessment using SOM and PROMETHEE techniques: A case study at the Chiufenershan area in Central Taiwan”, Int. J. Geogr. Inform. Sci., pp. 995-1012, 2008.
  • M. J. Friedel, “Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach”, Environ. Model. Softw., pp. 1660-1674, 2011.
  • G. A. Carpenter, “Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks”, Neural Networks, pp. 1473-1494, 1997.
  • C.-H. Chen, K. Li Pheng y W. Yan, “A strategy for acquiring customer requirement patterns using laddering technique and ART2 neural network”, Adv. Eng. Inform., pp. 229-240, 2002.
  • C. J. Van Westen, E. Castellanos y S. L. Kuriakose, “Spatial data for landslide susceptibility, hazard and vulnerability assessment: an overview”, Eng. Geol., pp. 112-131, 2008.
  • A. M. Ramos Cañón, L. F. Prada Sarmiento, M. G. Trujillo Vela, J. P. Macías y A. C. Santos, “Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia”, Landslides, pp. 671-681, 2015.
  • R. Henriques, F. Bacao y V. Lobo, “Exploratory geospatial data analysis using the Geo-SOM suite”, Comput. Environ. Urban Syst., 2012.
  • G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. von Landesberger, P. Bak y D. Keim, “Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns”, Comput. Graph. Forum, vol. 3, pp. 913-922, 2010.
  • F. Baçãoa, V. Lobo y M. Painhoa, “The self-organizing map, the Geo-SOM, and relevant variants for geosciences”, Comput. Geosci., vol. 31, n.º 2, pp. 155-163, 2005.
  • R. Henriques, B. Fernando y L. Victor, “Exploratory geospatial data analysis using the GeoSOM suite”, Comput. Environ. Urban Syst., vol. 36, n.º 3, pp. 218-232, 2012.
  • A. Brenning, Statistical geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models, Hamburger: Beiträge zur Physischen Geographie und Landschaftsökologie, 2008.
  • A. Brenning, “Spatial prediction models for landslide hazards: review, comparison and evaluation|”, Nat. Hazards Earth Syst. Sci., pp. 853-862, 2005.
  • S. Keesstra, G. Mol, A. Zaal y J. Wallinga, “Soil science in a changing world”, de Wageningen soil conference, 2015.
  • M. Ruff y K. Czurda, “Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria)”, Geomorphology, pp. 314-324, 2008.
  • A. Ozdemir, “Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains (Aks¸ehir, Turkey)”, Nat. Hazards, pp. 1573-1607, 2011.