Knowledge Graphs
- Hogan, Aidan 1
- Blomqvist, Eva 11
- Cochez, Michael 45
- D’amato, Claudia 3
- Melo, Gerard De 9
- Gutierrez, Claudio 1
- Kirrane, Sabrina 2
- Gayo, José Emilio Labra 6
- Navigli, Roberto 10
- Neumaier, Sebastian 2
- Ngomo, Axel-Cyrille Ngonga 12
- Polleres, Axel 2
- Rashid, Sabbir M. 7
- Rula, Anisa
- Schmelzeisen, Lukas 14
- Sequeda, Juan 13
- Staab, Steffen
- Zimmermann, Antoine 8
-
1
Universidad de Chile
info
-
2
Vienna University of Economics and Business
info
-
3
University of Bari Aldo Moro
info
-
4
VU University Amsterdam
info
- 5 Discovery Lab, Elsevier, The Netherlands
-
6
Universidad de Oviedo
info
-
7
Rensselaer Polytechnic Institute
info
- 8 École des mines de Saint-Étienne, France
-
9
Rutgers University
info
-
10
Università de Roma La Sapienza
info
-
11
Linköping University
info
-
12
University of Paderborn
info
- 13 data.world, USA
-
14
University of Stuttgart
info
-
15
University of Southampton
info
-
16
University of Bonn
info
-
17
University of Milano-Bicocca
info
ISSN: 0360-0300, 1557-7341
Year of publication: 2021
Volume: 54
Issue: 4
Pages: 1-37
Type: Article
More publications in: ACM Computing Surveys
Abstract
In this article, we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models, as well as languages used to query and validate knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We conclude with high-level future research directions for knowledge graphs.
Funding information
Hogan was supported by Fondecyt Grant No. 1181896. Hogan and Gutierrez were funded by ANID– Millennium Science Initiative Program– Code ICN17_002. Cochez did part of the work while employed at Fraunhofer FIT, Germany and was later partially funded byElsevier’s Discovery Lab.Kirrane,NgongaNgomo,PolleresandStaabreceivedfundingthroughthe project “KnowGraphs” from the European Union’s Horizon programme under the Marie Skłodowska-Curie grant agreement No. 860801. Kirrane and Polleres were supported by the European Union’s Horizon 2020 research and innovation programme under grant 731601. Labra was supported by the Spanish Ministry of Economy and Competitiveness (Society challenges: TIN2017-88877-R). Navigli was supported by the MOUSSE ERC Grant No. 726487 under the European Union’s Horizon 2020 research and innovation programme. Rashid was supported by IBM Research AI through the AI Horizons Network. Schmelzeisen was supported by the German Research Foundation (DFG) grant STA 572/18-1.Funders
-
Ministry of Economy and Competitiveness
Spain
- TIN2017-88877-R
Bibliographic References
- R. Agrawal, T. Imieliński, and A. Swami. 1993. Mining association rules between sets of items in large databases. In Proc. of SIGMOD.
- T. Al-Moslmi, M. G. Ocaña, A. L. Opdahl, and C. Veres. 2020. Named entity extraction for knowledge graphs: A literature overview. IEEE Access 8 (2020), 32862–32881.
- R. Angles. 2018. The property graph database model. In Proc. of AMW.
- R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. 2017. Foundations of modern query languages for graph databases. ACM Comp. Surv. 50, 5 (2017).
- R. Angles, P. Arenas, M. Barceló, P. A. Boncz, G. H. L. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. F. Sequeda, O. van Rest, and H. Voigt. 2018. G-CORE: A core for future graph query languages. In Proc. of SIGMOD.
- R. Angles and C. Gutiérrez. 2008. Survey of graph database models. ACM Comp. Surv. 40, 1 (2008).
- F. Baader, I. Horrocks, C. Lutz, and U. Sattler. 2017. An Introduction to Description Logic. Cambridge University Press.
- I. Balazevic, C. Allen, and M. Hospedales, T. 2019. Hypernetwork knowledge graph embeddings. In Proc. of ICANN Workshops.
- I. Balazevic, C. Allen, and T. M. Hospedales. 2019. Multi-relational Poincaré graph embeddings. In Proc. of NeurIPs.
- I. Balazevic, C. Allen, and T. M. Hospedales. 2019. TuckER: Tensor factorization for knowledge graph completion. In Proc. of EMNLP.
- P. Barceló, E. V. Kostylev, M. Monet, J. Peréz, J. Reutter, and J. P. Silva. 2020. The logical expressiveness of graph neural networks. In Proc. of ICLR.
- L.Bellomarini,E.Sallinger,andG.Gottlob.2018.TheVadalogsystem:Datalog-basedreasoningforknowledgegraphs. Proc. oVLDB Endow. 11, 9 (2018).
- M. K. Bergman. 2019. A Common Sense View of Knowledge Graphs. Adaptive Information, Adaptive Innovation, Adaptive Infrastructure Blog. Retrieved from http://www.mkbergman.com/2244/a-common-sense-view-ofknowledge-graphs/.
- K. Bollacker, P. Tufts, T. Pierce, and R. Cook. 2007. A platform for scalable, collaborative, structured information integration. In Proceedings of the International Workshop on Information Integration on the Web (IIWeb’07), Ullas Nambiar and Zaiqing Nie (Eds.).
- P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti. 2018. Knowledge graphs: New directions for knowledge representation on the semantic web (Dagstuhl Seminar 18371). Dagstuhl Rep. 8, 9 (2018).
- P. A. Bonatti, A. Hogan, A. Polleres, and L. Sauro. 2011. Robust and scalable linked data reasoning incorporating provenance and trust annotations. J. Web Seman. 9, 2 (2011).
- A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. In Proc. of NIPS.
- D. Brickley and R. V. Guha. 2014. RDF Schema 1.1. W3C Recommendation. W3C. https://www.w3.org/TR/rdfschema/.
- J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2014. Spectral networks and locally connected networks on graphs. In Proc. of ICLR.
- L. Bühmann, J. Lehmann, and P. Westphal. 2016. DL-learner—A framework for inductive learning on the Semantic Web. J. Web Seman. 39 (2016).
- Š. Čebirić, F. Goasdoué, H. Kondylakis, D. Kotzinos, I. Manolescu, G. Troullinou, and M. Zneika. 2019. Summarizing semantic graphs: A survey. VLDB J. 28, 3 (2019).
- M. Cochez, P. Ristoski, S. P. Ponzetto, and H. Paulheim. 2017. Global RDF vector space embeddings. In Proc. of ISWC.
- S. Cox, C. Little, J. R. Hobbs, and F. Pan. 2017. Time Ontology in OWL. W3C Recommendation/OGC 16-071r2. W3C and OGC. https://www.w3.org/TR/owl-time/.
- R. Cyganiak, D. Wood, and M. Lanthaler. 2014. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation. W3C. https://www.w3.org/TR/rdf11-concepts/.
- C. d’Amato, S. Staab, A. G. B. Tettamanzi, D. M. Tran, and F. L. Gandon. 2016. Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In Proc. of SAC.
- A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia. 2016. GraphFrames: An integrated API for mixing graph and relational queries. In Proc. of GRADES.
- L. De Raedt (Ed.). 2008. Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer.
- T. Demeester, T. Rocktäschel, and S. Riedel. 2016. Lifted rule injection for relation embeddings. In Proc. of EMNLP.
- T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. 2018. Convolutional 2D knowledge graph embeddings. In Proc. of AAAI.
- R. Q. Dividino, S. Sizov, S. Staab, and B. Schueler. 2009. Querying for provenance, trust, uncertainty and other meta knowledge in RDF. J. Web Seman. 7, 3 (2009).
- X.Dong,E.Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T.Strohmann, S. Sun, andW.Zhang.2014.Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proc. of KDD.
- L. Ehrlinger and W. Wöß. 2016. Towards a definition of knowledge graphs. In Proc. of SEMANTiCS Posters & Demos.
- D.Fensel,U.Simsek,K.Angele,E.Huaman,E.Kärle,O.Panasiuk,I.Toma,J.Umbrich,andA.Wahler.2020.Knowledge Graphs—Methodology, Tools and Selected Use Cases. Springer.
- N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. 2018. Cypher: An evolving query language for property graphs. In Proc. of SIGMOD.
- M. H. Gad-Elrab, D. Stepanova, J. Urbani, and G. Weikum. 2016. Exception-enriched rule learning from knowledge graphs. In Proc. of ISWC.
- L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. 2013. AMIE: Association rule mining under incomplete evidence in ontological knowledge bases. In Proc. of WWW.
- L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. 2015. Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6 (2015).
- G. A. Gesese, R. Biswas, and Sack H. 2019. A comprehensive survey of knowledge graph embeddings with literals: Techniques and applications. In Proc. of DL4KG.
- Y. Gil, S. Miles, K. Belhajjame, D. Garijo, G. Klyne, P. Missier, S. Soiland-Reyes, and S. Zednik. 2013. PROV Model Primer. W3C Working Group Note. W3C. https://www.w3.org/TR/rdf11-concepts/.
- J. M. Giménez-García, A. Zimmermann, and P. Maret. 2017. NdFluents: An ontology for annotated statements with inference preservation. In Proc. of ESWC.
- X. Glorot, A. Bordes, J. Weston, and Y. Bengio. 2013. A semantic matching energy function for learning with multirelational data. In Proc. of ICLR Workshops.
- R. V. Guha, R. McCool, and R. Fikes. 2004. Contexts for the semantic web. In Proc. of ISWC.
- S. Guo, Q. Wang,L.Wang,B.Wang,andL.Guo.2016.Jointly embedding knowledge graphs and logical rules. In Proc. of EMNLP.
- C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman. 2007. Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19, 2 (2007).
- W. L. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. 2018. Embedding logical queries on knowledge graphs. In Proc. of NIPS.
- S. Harris, A. Seaborne, and E. Prud’hommeaux. 2013. SPARQL 1.1 Query Language. W3C Recommendation. W3C. https://www.w3.org/TR/sparql11-query/.
- O. Hartig. 2017. Foundations of RDF* and SPARQL*—An alternative approach to statement-level metadata in RDF. In Proc. of AMW.
- T. Heath and C. Bizer. 2011. Linked Data: Evolving the Web into a Global Data Space (1st Edition).Vol.1.Morgan& Claypool.
- N. Heist, S. Hertling, R. Ringler, and H. Paulheim. 2020. Knowledge graphs on the web—An overview. CoRR abs/2003.00719 (2020).
- D. Hernández, A. Hogan, and M. Krötzsch. 2015. Reifying RDF: What works well with Wikidata? In Proc. of SSWS.
- F. L. Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 1–4 (1927).
- P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. 2012. OWL 2 Web Ontology Language Primer (2nd Edition). W3C Recommendation. W3C. https://www.w3.org/TR/owl2-primer/.
- P. Hitzler, M. Krötzsch, and S. Rudolph. 2010. Foundations of Semantic Web Technologies. Chapman and Hall/CRC Press.
- V. T. Ho, D. Stepanova, M. H. Gad-Elrab, E. Kharlamov, and G. Weikum. 2018. Rule learning from knowledge graphs guided by embedding models. In Proc. of ISWC.
- J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and G. Weikum. 2011. YAGO2: Exploring and querying world knowledge in time, space, context, and many languages. In Proc. of WWW.
- A. Hogan. 2020. Knowledge graphs: Research directions. In Proc. of Reasoning Web. Springer.
- A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. Labra Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A. C. Ngonga Ngomo, S. M. Rashid, A. Rula, L. Schmelzeisen, J. F. Sequeda, S. Staab, and A. Zimmermann. 2020. Knowledge graphs. CoRR arXiv:2003.02320 (2020).
- M. Homola and L. Serafini. 2012. Contextualized knowledge repositories for the semantic web. J. Web Seman. 12 (2012).
- I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. 2004. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission. https://www.w3.org/Submission/SWRL/.
- X. Huang, J. Zhang, D. Li, and P. Li. 2019. Knowledge graph embedding based question answering. In Proc. of WSDM.
- R. Hussein, D. Yang, and P. Cudré-Mauroux. 2018. Are meta-paths necessary? Revisiting heterogeneous graph embeddings. In Proc. of CIKM.
- A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Manhardt, H. Chafi, M. Capota, N. Sundaram, M. J. Anderson, I. G. Tanase, Y. Xia, L. Nai, and P. A. Boncz. 2016. LDBC graphalytics: A benchmark for large-scale graph on parallel and distributed platforms. Proc. VLDB Endow. 9, 13 (2016).
- D. Janke and S. Staab. 2018. Storing and querying semantic data in the cloud. In Proc. of RW.
- G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. 2015. Knowledge graph embedding via dynamic mapping matrix. In Proc. of ACL.
- S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu. 2020. A survey on knowledge graphs: Representation, acquisition and applications. CoRR abs/2002.00388 (2020).
- E. Kärle, U. Simsek, O. Panasiuk, and D. Fensel. 2018. Building an ecosystem for the Tyrolean tourism knowledge graph. CoRR abs/1805.05744 (2018).
- S. M.Kazemi,R.Goel,K.Jain,I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. 2019. Relational representation learning for dynamic (knowledge) graphs: A survey. CoRR abs/1905.11485 (2019).
- S. M. Kazemi and D. Poole. 2018. SimplE embedding for link prediction in knowledge graphs. In Proc. of NIPS.
- M. Kejriwal. 2019. Domain-specific Knowledge Graph Construction. Springer.
- M.KiferandH.Boley.2013.RIFOverview(2ndEdition).W3CWorkingGroupNote.W3C.https://www.w3.org/TR/rifoverview/.
- T. N. Kipf and M. Welling. 2017. Semi-supervised classification with graph convolutional networks. In Proc. of ICLR.
- H. Knublauch and D. Kontokostas. 2017. Shapes Constraint Language (SHACL). W3C Recommendation. W3C. https: //www.w3.org/TR/shacl/.
- A.Krizhevsky, I. Sutskever, and G. E. Hinton. 2017. ImageNet classification with deep convolutional neural networks. ACMCommun. 60, 6 (2017).
- M. Krötzsch, M. Marx, A. Ozaki, and V. Thost. 2018. Attributed description logics: Reasoning on knowledge graphs. In Proc. of IJCAI.
- J. E. Labra Gayo, E. Prud’hommeaux, I. Boneva, and D. Kontokostas. 2017. Validating RDF Data.Vol.7.Morgan& Claypool.
- J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. 2015. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web J. 6, 2 (2015).
- Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. 2015. Learning entity and relation embeddings for knowledge graph completion. In Proc. of AAAI.
- Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. 2012. Distributed GraphLab: A framework for machine learning in the cloud. Proc. VLDB Endow. 5, 8 (2012).
- C. Lu, P. Laublet, and M. Stankovic. 2016. Travel attractions recommendation with knowledge graphs. In Proc. of EKAW.
- G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. 2010. Pregel: A system for large-scale graph processing. In Proc. of SIGMOD.
- J. McCarthy. 1993. Notes on formalizing context. In Proc. of IJCAI.
- N. Mihindukulasooriya, M. Rashid, G. Rizzo, R. García-Castro, Ó. Corcho, and M. Torchiano. 2018. RDF shape induction using knowledge base profiling. In Proc. of SAC.
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. In Proc. of ICLR Workshops. arXiv preprint arXiv:1301.3781 (2013).
- J. J. Miller. 2013. Graph database applications and concepts with Neo4j. In Proc. of SAIC.
- M. Minsky. 1974. A framework for representing knowledge. MIT-AI Memo 306, Santa Monica (1974). https://dspace. mit.edu/bitstream/handle/1721.1/6089/AIM-306.pdf.
- F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. 2017. Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proc. of CVPR.
- B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. 2012. OWL 2 Web Ontology Language Profiles (2nd Edition). W3C Recommendation. W3C. https://www.w3.org/TR/owl2-profiles/.
- B. Motik, R. Shearer, and I. Horrocks. 2009. Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36 (2009).
- C. Mungall, A. Ruttenberg, I. Horrocks, and D. Osumi-Sutherland. 2012. OBO Flat File Format 1.4 Syntax and Semantics. Editor’s Draft. https://owlcollab.github.io/oboformat/doc/obo-syntax.html.
- R. Navigli and S. P. Ponzetto. 2012. BabelNet: The automatic construction, evaluation and application of a widecoverage multilingual semantic network. AI J. 193 (2012).
- V. Nguyen, O. Bodenreider, and A. Sheth. 2014. Don’t like RDF reification?: Making statements about statements using singleton property. In Proc. of WWW.
- M. Nickel, L. Rosasco, and T. A. Poggio. 2016. Holographic embeddings of knowledge graphs. In Proc. of AAAI.
- M. Nickel and V. Tresp. 2013. Tensor factorization for multi-relational learning. In Proc. of ECML-PKDD.
- I. Nonaka and H. Takeuchi. 1995. The Knowledge-Creating Company. Oxford University.
- N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. 2019. Industry-scale knowledge graphs: Lessons and challenges. ACM Queue 17, 2 (2019).
- L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66. Stanford InfoLab.
- J. Z. Pan, G. Vetere, J. M. Gómez-Pérez, and H. Wu (Eds.). 2017. Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer.
- N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos. 2019. Estimating node importance in knowledge graphs using graph neural networks. In Proc. of SIGKDD.
- N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos. 2020. MultiImport: Inferring node importance in a knowledge graph from multiple input signals. In Proc. of SIGKDD.
- H. Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Seman. Web J. 8, 3 (2017).
- T. Pellissier Tanon, D. Stepanova, S. Razniewski, P. Mirza, and G. Weikum. 2017. Completeness-aware rule learning from knowledge graphs. In Proc. of ISWC.
- J. Pennington, R. Socher, and C. Manning. 2014. GloVe: Global vectors for word representation. In Proc. of EMNLP.
- A. Piscopo, L. Kaffee, C. Phethean, and E. Simperl. 2017. Provenance information in a collaborative knowledge graph: An evaluation of Wikidata external references. In Proc. of ISWC.
- E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig. 2014. Shape expressions: An RDF validation and transformation language. In Proc. of SEMANTICS.
- J. Pujara, H. Miao, L. Getoor, and W. W. Cohen. 2013. Knowledge graph identification. In Proc. of ISWC.
- G. Qi, H. Chen, K. Liu, H. Wang, Q. Ji, and T. Wu. 2020. Knowledge Graph.
- R. Quillian. 1963. A Notation for Representing Conceptual Information: An Application to Semantics and Mechanical English Paraphrasing. Technical Report SP-1395. Systems Development Corp.
- S. Rabanser, O. Shchur, and S. Günnemann. 2017. Introduction to tensor decompositions and their applications in machine learning. CoRR abs/1711.10781 (2017).
- P. Ristoski and H. Paulheim. 2016. RDF2Vec: RDF graph embeddings for data mining. In Proc. of ISWC.
- G. Rizzo, C. d’Amato, N. Fanizzi, and F. Esposito. 2017. Terminological cluster trees for disjointness axiom discovery. In Proc. of ESWC.
- T. Rocktäschel and S. Riedel. 2017. End-to-end differentiable proving. In Proc. of NIPS.
- M. A. Rodriguez. 2015. The Gremlin graph traversal machine and language. In Proc. of DBPL.
- S. Rudolph, M. Krötzsch, and P. Hitzler. 2008. Description logic reasoning with decision diagrams: Compiling SHIQ to disjunctive datalog. In Proc. of ISWC.
- A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, and A. Maurino. 2012. On the diversity and availability of temporal information in linked open data. In Proc. of ISWC.
- A. Rula, M. Palmonari, S. Rubinacci, A. Ngonga Ngomo, J. Lehmann, A. Maurino, and D. Esteves. 2019. TISCO: Temporal scoping of facts. J. Web Seman. 54 (2019).
- A. Sadeghian, M. Armandpour, P. Ding, and P. Wang. 2019. DRUM: End-to-end differentiable rule mining on knowledge graphs. In Proc. of NIPS.
- F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The graph neural network model. IEEE Trans. Neural Netw. 20, 1 (2009).
- E. W.Schneider. 1973. Course modularization applied: The interface system and its implications for sequence control and data analysis. In Proc. of ADIS.
- M. Schneider and G. Sutcliffe. 2011. Reasoning in the OWL 2 full ontology language using first-order automated theorem proving. In Proc. of CADE.
- C. Schuetz, L. Bozzato, B. Neumayr, M. Schrefl, and L. Serafini. 2021. Knowledge graph OLAP: A multidimensional model and query operations for contextualized knowledge graphs. Seman. Web J. (2021). (Accepted; In Press).
- P. Seifer, J. Härtel, M. Leinberger, R. Lämmel, and S. Staab. 2019. Empirical study on the usage of graph query languages in open source Java projects. In Proc. of SLE.
- A. Singhal. 2012. Introducing the Knowledge Graph: Things, not strings. Google Blog. Retrieved from https://www. blog.google/products/search/introducing-knowledge-graph-things-not/.
- R. Socher, D. Chen, C. D. Manning, and A. Ng. 2013. Reasoning with neural tensor networks for knowledge base completion. In Proc. of NIPS.
- A. Sperduti and A. Starita. 1997. Supervised neural networks for the classification of structures. IEEE Trans. Neural Netw. 8, 3 (1997).
- U. Straccia. 2009. A minimal deductive system for general fuzzy RDF. In Proc. of RR.
- P. Stutz, D. Strebel, and A. Bernstein. 2016. Signal/Collect12. Seman. Web J. 7, 2 (2016).
- F. M. Suchanek, J. Lajus, A. Boschin, and G. Weikum. 2019. Knowledge representation and rule mining in entitycentric knowledge bases. In Proc. of RWeb.
- Yizhou Sun and Jiawei Han. 2012. Mining Heterogeneous Information Networks: Principles and Methodologies.Morgan &Claypool Publishers.
- Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. 2011. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4, 11 (2011).
- Z. Sun, Z. Deng, J. Nie, and J. Tang. 2019. RotatE: Knowledge graph embedding by relational rotation in complex space. In Proc. of ICLR.
- G. Töpper, M. Knuth, and H. Sack. 2012. DBpedia ontology enrichment for inconsistency detection. In Proc. of ISEMANTICS.
- T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. 2016. Complex embeddings for simple link prediction. In Proc. of ICML.
- L. R. Tucker. 1964. The extension of factor analysis to three-dimensional matrices. In Contributions to Mathematical Psychology. Holt, Rinehart and Winston.
- O. Udrea, D. Reforgiato Recupero, and V. S. Subrahmanian. 2010. Annotated RDF. ACM Trans. Comput. Log. 11, 2 (2010).
- S. Vashishth, P. Jain, and P. Talukdar. 2018. CESI: Canonicalizing open knowledge bases using embeddings and side information. In Proc. of WWW.
- P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. 2018. Graph attention networks. In Proc. of ICLR.
- J. Völker, D. Fleischhacker, and H. Stuckenschmidt. 2015. Automatic acquisition of class disjointness. J. Web Seman. 35, P2 (2015).
- D. Vrandečić and M. Krötzsch. 2014. Wikidata: A free collaborative knowledgebase. ACM Commun. 57, 10 (2014).
- M. Wang, R. Wang, J. Liu, Y. Chen, L. Zhang, and G. Qi. 2018. Towards empty answers in SPARQL: Approximating querying with RDF embedding. In Proc. of ISWC.
- Q. Wang, Z. Mao, B. Wang, and L. Guo. 2017. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 12 (Dec. 2017).
- Q. Wang, B. Wang, and L. Guo. 2015. Knowledge base completion using embeddings and rules. In Proc. of IJCAI.
- X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. 2019. Heterogeneous graph attention network. In Proc. of WWW.
- X. Wang and S. Yang. 2019. A tutorial and survey on fault knowledge graph. In Proc. of CyberDI/CyberLife. 256–271.
- Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowledge graph embedding by translating on hyperplanes. In Proc. of AAAI.
- Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2019. A comprehensive survey on graph neural networks. CoRR abs/1901.00596 (2019).
- Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. 2018. RDF data storage and query processing schemes: A survey. ACM Comput. Surv. 51, 4 (2018).
- G.Xiao, L. Ding, G. Cogrel, and D. Calvanese. 2019. Virtual knowledge graphs: An overview of systems and use cases. Data Int. 1, 3 (2019), 201–223.
- R. Xin, J. Gonzalez, M. J. Franklin, and I. Stoica. 2013. GraphX: A resilient distributed graph system on Spark. In Proc. of GRADES.
- R. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. 2013. Shark: SQL and rich analytics at scale. In Proc. of SIGMOD.
- K. Xu, W. Hu, J. Leskovec, and S. Jegelka. 2019. How powerful are graph neural networks? In Proc. of ICLR.
- J. Yan, C. Wang, W. Cheng, M. Gao, and A. Zhou. 2018. A retrospective of knowledge graphs. Front. Comput. Sci. 12, 1 (2018), 55–74.
- B. Yang, W. Yih, X. He, J. Gao, and L. Deng. 2015. Embedding entities and relations for learning and inference in knowledge bases. In Proc. of ICLR.
- F. Yang, Z. Yang, and W. W. Cohen. 2017. Differentiable learning of logical rules for knowledge base reasoning. In Proc. of NIPS.
- L. Yang, Z. Xiao, W. Jiang, Y. Wei, Y. Hu, and H. Wang. 2020. Dynamic heterogeneous graph embedding using hierarchical attentions. In Proc. of ECIR.
- F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma. 2016. Collaborative knowledge base embedding for recommender systems. In Proc. of SIGKDD.
- A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. 2012. A general framework for representing, reasoning and querying with annotated semantic web data. J. Web Seman. 12 (Mar. 2012).