Electrochemically controlled patterning for biosensor arrays.

  1. Dondapati, Srujan Kumar
Supervised by:
  1. Ioanis Katakis Director

Defence university: Universitat Rovira i Virgili

Fecha de defensa: 15 October 2007

Committee:
  1. Agustín Costa García Chair
  2. Ciara O'sullivan Secretary
  3. Arben Merkoçi Committee member
  4. Panagiotis Argitis Committee member
  5. Calum McNeil Committee member

Type: Thesis

Teseo: 138949 DIALNET lock_openTDX editor

Abstract

There is an increasing demand of multianalyte sensing devices having potential applications in biomedical, biotechnological, industrial and environmental fields. A good spatial control during biomolecule deposition step is strictly necessary; each biomolecule has to be precisely deposited on the surface of the relevant sensor (eg., an amperometric transducer), avoiding mixing that can compromise the biosensor specificity. The aim of this thesis is to develop different patterning methods for the selective immobilization of biomolecules. The first method is selective electrodeposition of biofunctionalized Au nanoparticles for biosensor arrays. This is an electrochemically controlled patterning method where the Au nanoparticles modified by the enzymes initially and later the enzyme modified Au nanoparticles were electrodeposited selectively on the electrode surface. As a part of this methodology, initially biofunctionalized Au nanoparticles were prepared using three different approcahes. One is Au-thiol dative bonding, the second is direct adsorption and finally electrostatic layerby- layer approach. Different biomolecules like horse radish peroxidase(HRP), glucose oxidase (GOX), bovine serum albumin(BSA), and finally fluorescence labelled oilgonucleotide thiols were used to attch to the Au nanoparticles. Biofunctionalized Au nanoparticles were characterized by different techniques like zeta sizer, UV-Vis spectroscopy, transmission electron microscopy (TEM). UV-Vis spectroscopy showed the successfull modification of Au nanoparticles with a characterstic surface plasmon peak related to the stability. By using zeta sizer, layer-by-layer modification of the Au nanoparticles with redox polymer and enzymes were characterized successfully. Changes of the Au nanoparticles modified with BSA was characterised at different pH s by using the zeta sizer. After the preparation of biofunctionalized particles, some fundamental studies were done with electrodeposition of Au nanoparticles modified with medically important BSA, redox polymer to see how different parameters like potential, time of deposition, interelectrode distance, counter electrode sized, pH, effect the electrodeposition. As a part of these fundamental studies Au colloids modified with HRP and GOX were deposited for studying the electrocalaytic behaviour of the enzymes on the Au nanoparticles after electrodeposition. Later this methodology was applied for creating biosensor arrays by using two different approaches. In the first approach, GOX and HRP functionalized redox polymer modified Au nanoparticles were