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Abstract: Knowledge of the free draft of ports is essential for the adequate management of ports.
To maintain these drafts, it is necessary to carry out dredging periodically, and to conduct bathymetries
using traditional techniques, such as echo sounding. However, an echo sounder is very expensive and
its accuracy is subject to weather conditions. Thus, the use of recent advancements in remote sensing
techniques provide a better solution for mapping and estimating the evolution of the seabed in
these areas. This paper presents a cost-effective and practical method for estimating satellite-derived
bathymetry for highly polluted and turbid waters at two different ports in the cities of Luarca
and Candás in the Principality of Asturias (Spain). The method involves the use of the support
vector machine (SVM) technique and open Sentinel-2 satellite imagery, which the European Space
Agency has supplied. Models were compared to the bathymetries that were obtained from the in
situ data collected by a single beam echo sounder that the Port Service of the Principality of Asturias
provided. The most accurate values of the training and testing dataset in Candás, were R2 = 0.911
and RMSE = 0.3694 m, and R2 = 0.8553 and RMSE = 0.4370 m, respectively. The accuracies of the
training and testing dataset values in Luarca were R2 = 0.976 and RMSE = 0.4409 m, and R2 = 0.9731
and RMSE = 0.4640 m, respectively. The regression analysis results of the training and testing dataset
were consistent. The approaches that have been developed in this work may be included in the
monitoring of future dredging activities in ports, especially where the water is polluted, muddy and
highly turbid.
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1. Introduction

A bathymetric model is an essential source of information for an understanding of the marine
environment. It should be the starting point for any project that is based on marine cartography.
Accurate bathymetry data also facilitate the habitat assessment [1,2], classification and detailed
representation of the seabed [3] and an understanding of the morphology of the area. Water
depth information is also essential for hydrodynamic and wave modelling, sediment transport and
environmental exploration, facilitates simulation of the impact of construction and dredging activities,
etc. [4]. Similarly, accurate bathymetry data are of utmost importance for the stabilization of beaches
and, hence, the security of buildings that are located near the sea. Further, it is essential in scientific
research and modeling sea floor relief. These are also necessary for the exploration, exploitation,
conservation and administration of natural resources and, especially, for a coastal environment impact
assessment and protection. [5,6].
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The ports are viewed as buffer zones or protected areas, in which ships can find protection from
the action of waves. These configurations of the ports aid the dissipation of the waves, but not the
action of the coastal dynamics. The coastal dynamics mobilize the sediments, which are then deposited
in the calm water areas of the ports. Consequently, dredging operations are required to empty the
navigation channel of these sediments and avoid serious disaster [7]. Dredging recovers the seabed
that is currently full of sand and thus facilitates access by ships to the ports by means of the navigation
channel. Dredging is also required to ensure that the minimum draft that is necessary for ships to
navigate and maneuver within the ports is maintained. It is also necessary for the development of
port infrastructure. Bathymetric mapping is used in, and is essential to, the management of such port
operations. In any event, whether bathymetric work is used as an aid to navigation or as part of a
process or activity in maritime engineering, its high economic significance is clear. Even small variations
in vertical measurement would have great economic repercussions if the level of error if not evaluated.
However, on some occasions, knowledge of errors is necessary. On other occasions, it is helpful to
reduce any errors and, therefore, increase the reliability of the information. Bathymetry studies are
conducted by the use of various techniques. Each technique can give a different result depending on the
precision that it provides. Conventional techniques, such as airborne-, ground- and ship-borne-based
surveying provide very accurate measurements [8]. Among the most commonly used techniques is
the use of echo sounders. Techniques that involve vessel-based single beam echo sounding, however,
are limited due to problems in accuracy and precision, as well as the difficulty to access shallow coastal
waters. Currently, multibeam echo sounders and light detection and ranging (LiDAR) are commonly
used for high-resolution bathymetry retrieval in shallow areas [9,10]. Nevertheless, these techniques
are better employed in small areas and are limited by high costs [8–12]. These factors cause other
techniques, such as remote sensing, to become competitive and attractive methods of providing reliable
depth estimates at a much lower cost [13,14].

Remotely sensed technology is considered a low-cost, time-effective and widely adopted solution
for satellite-derived bathymetry (SDB), which can be considered as a promising alternative tool to map
bottom depths in areas with highly dynamic seabed characteristics [15]. SDB methods can be classified
according to a physics-based approach or empirical approach: the first simulates the light that interacts
through the water column, and the second develops regressions between spectral radiation and in
situ calibration data [16]. Bathymetric information from shallow areas is key to managing coastal
environments, however, there is still incomplete and spatially limited coverage, especially in optically
shallow areas because the water clarity has a significant and variable impact on SDB accuracy.

Machine learning methods have been used to estimate water depth from remote optical images.
One of the initial attempts used a combination of multispectral data and radiometric techniques [17].
With the arrival of Landsat images, bathymetry monitoring methods were improved and applied
effectively to optical satellite images [18,19]. The advancement of remote sensing technology has enabled
numerous researchers to expand the use of these techniques with improved spectral resolution [20–22].
In recent years, thanks to the technological advances and improvements that satellites are bringing to the
study of the marine environment, topographic surveys are conducted by the use of satellites and remote
sensing technology. This technology permits the use of high-resolution satellite images to determine
depth ranges based on the wavelength of the spectral bands of the image. The main obstacles that
are encountered when applying these technologies are the turbidity of the water and the reflectance
penetration [23]. The suspended particulate matter, which is the main contributor to turbidity, introduces
a confusing reflectance of light that the satellite detects. The waters of different turbidity levels disperse
the incoming radiation differently, which implies greater complexity and development problems in the
highly dynamic coastal regions and anthropogenic ecosystems of the ports [24,25].

In this study, regular optical satellite images were used. More specifically, the ESA Sentinel-2
constellation (two satellites) was used to obtain bathymetric mapping by the use of a support vector
machine (SVM), a machine learning technique. These satellites’ images are freely available, have a
resolution of 10 to 60 m and a revisit interval of five days. Sentinel-2 has six land monitoring bands,
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each of which can be compared to Landsat-8. In addition, the satellite has three other bands, thereby
covering the red-edge spectrum [26]. At present, these data that this satellite provides and the use of
advanced computational techniques for bathymetry estimations represent an important advancement
in this field [27–29].

To obtain deep water inversion from optical sensors, investigators have employed regression
models that are based on machine learning techniques. Liu et al. [30], for example, investigated the
performance of two artificial neural network methods—general regression neural networks (GRNN)
and multilayer perceptron (MLP)—as methods for possible use in bathymetry studies. The results
showed that artificial neural networks are more useful and accurate than the inversion model and
regression tree. Other researchers have used an artificial neural network (ANN) [31,32] for estimating
the depths of shallow waters. More recently, other authors used the machine learning technique of
SVM to estimate shallow water depths, for instance, [25] applied the non-linear machine learning
technique of SVM to Landsat images in Saint Maarten Island and the Ameland Inlet in the Dutch
Wadden Sea and experienced an overall error of 8.26% and 14.43%, respectively. At Kauai Island
in Hawaii, [33] proposed a spatially distributed SVM system to use in estimating the bathymetry of
shallow water by the use of optical satellite images, as well as SVMs that were locally trained with
spatially weighted votes for the prediction. In the present case, the experimental results indicated
that the localized model gave a 60% lower bathymetry estimation error than from the root mean
squared error (RMSE). In recent years, with the use of remote optical observation, many studies have
been undertaken to estimate bathymetry in shallow water [25,34]. However, because the underlying
surfaces of the harbors are submerged and frequently obscured by turbid and mud, it can be difficult to
estimate changes in depths of the bottoms of harbors. Only recently, on the coast of Misano, Muzirafuti
et al. [35] published a comparative quantitative analysis of the log band ratio and the optimal band ratio
methods of analysis, which are employed regularly in bathymetry. The study considered the potential
application of these methods in the multispectral satellite imaging of a coastal area to determine the
spectral band ratio that would provide water depth information with the most accuracy, particularly in
shallow turbid water. This methodology implies having great knowledge of data processing. A simple
system is sought in this work in order to apply it to the management of ports without a need to resort
to the bathymetry conducted in situ using an echo sounder.

This study presents optimal satellite-based bathymetry derivation models that have been
developed for use with highly turbid waters at two different ports in the cities of Luarca and
Candás in the Principality of Asturias (Spain). The research used data that were provided by the
Sentinel-2 satellite, as well as the logarithmic relationship and analytical approaches using SVM.
The work has sought to provide an efficient method to derive bathymetric data from Sentinel-2 images.
Satellite-derived bathymetry maps can be used to provide low-cost and high-density data for later use
in numerical models in port research. It is hoped that the approach that was developed in this work is
included in the monitoring of the bathymetry of the Candás and Luarca ports as a fast and economical
alternative to conventional bathymetry to evaluate the need for dredging. This technique can be used
also in studying coastal management.

2. Materials and Methods

2.1. Study Sites and Data Sites

The first study site is the port of Candás (Figure 1). Candás is a coastal town in Asturias Principality
in one of the northernmost points of the Iberian Peninsula. The town has a population of approximately
7000 inhabitants. Candás has a medium-sized port where fishing boats and nautical sports boats
coexist, although the latter outnumber the former. The port has 188 fixed moorings and 48 temporary
moorings for use by nautical sports boats. The minimum drafts of the port range between 3.5 m in the
navigation channel and 1 m at the interior docks, where the boats are small. Fish production in 2019
was 112 tons.
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information was collected by use of an echo sounder single beam Navisound 210 (Reson, Inc.; 
Slangerup, Denmark) that has a variable frequency acoustic profiler (201 kHz/33 kHz). Its position 
was determined by using GPS. The second study site was Luarca port (Figure 2), a coastal town in 
the western area of the Principality of Asturias in Spain. The town has a population of approximately 
5200 inhabitants. It has a medium-sized port that is home to fishing boats and nautical sports, 
although the fishing sector predominates. Fish production in 2019 was 499t. As the boats that use the 
port are generally small vessels, the minimum drafts range between three meters in the navigation 
canal and two meters in the docking area. Bathymetric data also were collected by use of an echo 
sounder single beam Navisound 210 dual frequency (190–235 kHz), and a 1 cm vertical resolution. 
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The study’s echo sounding data for this area were determined by reference to survey positions 
of the UTM/WGS84 ZONA 30N, on 16 October 2016, 12 March 2018 and 29 April 2019 in the case of 

Figure 1. Study area (a) Candás port; (b) bathymetry using echo-sounding measurements. The colors
denote the depth of the water in meters.

Bathymetric data were obtained from the Port Service of the Principality of Asturias, which
conducts accurate bathymetric studies that concern modeling water quality and morphological changes
in ports. These bathymetries are conducted to ensure good management of the exploitation of the
ports. Knowledge of the seabed facilitates the appropriate management and exploitation of the ports.
Therefore, the bathymetric studies are conducted as part of its conservation and maintenance work for
the planning of dredging. In this study, the only three available bathymetric charts for 2016, 2018 and
2019 were used to adjust the satellite images at various depths. This bathymetric information was
collected by use of an echo sounder single beam Navisound 210 (Reson, Inc.; Slangerup, Denmark)
that has a variable frequency acoustic profiler (201 kHz/33 kHz). Its position was determined by
using GPS. The second study site was Luarca port (Figure 2), a coastal town in the western area of the
Principality of Asturias in Spain. The town has a population of approximately 5200 inhabitants. It has
a medium-sized port that is home to fishing boats and nautical sports, although the fishing sector
predominates. Fish production in 2019 was 499t. As the boats that use the port are generally small
vessels, the minimum drafts range between three meters in the navigation canal and two meters in the
docking area. Bathymetric data also were collected by use of an echo sounder single beam Navisound
210 dual frequency (190–235 kHz), and a 1 cm vertical resolution.
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Figure 2. Study area (a) Luarca port; (b) bathymetry using echo-sounding measurements. The colors
denote the depth of the water in meters, and the number denotes the dikes of Canouco and La Encoronada.

The study’s echo sounding data for this area were determined by reference to survey positions of
the UTM/WGS84 ZONA 30N, on 16 October 2016, 12 March 2018 and 29 April 2019 in the case of Candás,
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as well as 28 June 2016, 10 May 2018 and 28 May 2019 for Luarca (see Table 1). The port data points
for the in situ measurements at Candás were taken by several passes of the vessel. The distribution
of the passes was made using a 10 × 20 m mesh. In Luarca, the data points were taken by passes,
the distribution of which was made with a 10 × 30 m mesh in the sheltered area (between the Canouco
and La Encoronada dikes, see Figure 2b) and 30 × 30 m in external waters.

2.2. Satellite Data

The data from the Sentinel-2A and -2B twin polar-orbiting satellites were used to estimate the
study sites’ depth of water. Sentinel-2 imagery data can be obtained from the European Space Agency’s
sci-hub-portal (ESA) [36,37]. The satellites Sentinel-2A and -2B were launched on June 23, 2015, and March
2017, respectively [38]. In order to evaluate the capabilities of Sentinel-2′s coastal capabilities, it is necessary
to possess a thorough understanding of revisit intervals and statistics regarding the world’s coastlines.
Sentinel-2 collects data during its orbital ground swaths. These data are subsequently interpolated on
military grid reference system (MGRS) zones that can be accessed by the public. The Sentinel-2 images
were collected on 3 November 2016, 16 March 2018 and 22 April 2019 in Candás port. In the study of
Luarca, the satellite images were collected on 29 June 2016, 10 May 2018 and 30 May 2019 (see Table 1).
The Sentinel-2 satellite is equipped with a single multispectral instrument (MSI) that has thirteen spectral
bands. The bands use a push broom sensor. The latter collects rows of image data during the orbital
swath and uses the satellite’s forward motion along its path to generate new rows for acquisition [39].
Bands have a spatial resolution of 10 to 60 m. For example, the resolution of B2, B3, B4 and B8 is 10 m,
whereas that of B5, B6, B7, B8A, B11 and B12 is 20 m. The resolution of the remaining bands is 60 m
(Table 2). The dataset from Sentinel-2 was chosen due to its temporal proximity to the echo-sounding
bathymetry dates and the availability of cloud free data.

Table 1. Dates of acquisition of Sentinel-2 data and in situ measurements data.

Dates of Acquisition

In Situ Sentinel-2

Candás
16 October 2016
12 March 2018
29 April 2019

03 November 2016
16 March 2018
22 April 2019

Luarca
28 June 2016
10 May 2018
28 May 2019

29 June 2016
10 May 2018
30 May 2019

Table 2. Sentinel-2 bands.

Band Spectral Region Resolution
[m]

Central Wavelength
[nm]

B1 Coastal aerosol 60 443
B2 Blue 10 490
B3 Green 10 560
B4 Red 10 665
B5 Vegetation red edge 20 705
B6 Vegetation red edge 20 740
B7 Vegetation red edge 20 783
B8 NIR 10 842

B8A Narrow NIR 20 865
B9 Red Edge 60 940
B10 Water vapor 60 1375
B11 SWIR–Cirrus 20 1610
B12 SWIR 20 2190
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2.3. Methodology

2.3.1. Pre-Processing of Satellite Images

The Sentinels Application Platform (SNAP) was used to view and export data. It is software
offered at no charge by the European Space Agency [37] to process and analyze satellite images from
the Sentinel satellite fleet. This program has a repertoire of tools (called Sentinel Toolboxes) that are
specific to working with the images, whether they are Sentinel-1 radar images or the optical Sentinel-2
and Sentinel-3 multiband images. In any case, the SNAP tools can be used to manage multispectral
images from missions, such as Envisat, Landsat, MODIS or SPOT. What was obtained were data from
bands with different resolutions. The first step in using these data is to transform all bands to the same
resolution. All spectral bands of the Sentinel-2 image were resampled to a 10 m resolution [40,41].
Resampling of the downloaded images was conducted with the software ESA SNAP (v7.0.1) [42]
using the S2 Resampling Processor. As a result, a set of data is obtained that is not georeferenced,
because we have only the longitude and latitude of the corners of the study portion. To determine the
positioning of the reference points, the geographical location of each point is defined by its longitude
and latitude using the SNAP program. From the longitude and latitude, a coordinate projection is
made using the WGS84 ellipsoid, obtaining the coordinates in ETRS89. This is the same system with
which the positions obtained by the echo sounder are projected. Position average errors in the ellipsoid
projections are of the order of 1 cm.

2.3.2. Pre-Processing of Data. Generation of Comparison Bathymetry Grid

The data obtained were compared to the bathymetry projected. For this, coordinates were
projected using a geodetic calculator, since the bathymetry uses ETRS89 coordinates, based on the
same ellipsoid WGS84. Then, the data of the bands that are associated with UTM x-y coordinates
could be obtained. To assign the z coordinate, the annual bathymetries of the study ports are used.
These are undertaken by a single beam probe that is mounted on a vessel. From these z data that are
obtained every 10 cm, a surface of the port’s bottom is generated. This surface is obtained using digital
models of the terrain type triangulated irregular network (TIN). In this case, triangulation is conducted
using linear interpolation. The error generated in this process is small since the surfaces of the seabed
are smooth surfaces and without great irregularities. The z coordinates are referenced to zero of the
port itself (the minimum level that has been measured at the highest low tide of the last 15 years).
Each pixel is assigned the corresponding dimensions based on the former’s x-y location (Figure 3).
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2.3.3. Bathymetry Estimation Based on Support Vector Machines

This study applied support vector algorithms to derive bathymetry from water reflectivity. Stumpf
et al. [43] suggested a linear model, despite the fact that, in many ways, it did not always result in
a relationship between the water depths and the ratio that was linear. Thus, it is best to obtain it by
exploring the relationship of a non-linear function (f ) to map water depth (Z) (Equation (1)).

Z = f
ln[nRw(λi)]

ln
[
nRw

(
λ j

)] (1)

where n is a fixed value and Rw is the reflectance that has been observed for the wavelength (λ) of
bands i and j.

Support vector machine is one of the many non-linear regression techniques. It has been studied
extensively and finds use as a universal approximation [44–46]. SVM has some advantages over
other methods. Its classification accuracy is relatively higher when the inputs are correctly selected.
This method is based on a kernel-based algorithm. Its new input estimations depend on an evaluation
by the kernel function of a subcategory of events in a training stage. The task to use this method is to
identify a function that will minimize Equation (2)’s final error.

y(x) = wT
·φ(x) + b (2)

where y(x) is the predicted value, b represents the value of the bias and φ(x) maintains the feature
space transformation. An ε insensitive error function (Equation (4)) replaces the error function in the
linear regression (Equation (3)) in this method. Equation (4) assigns a zero to values if ε is greater than
the difference between the predicted and target value. If the difference is greater than, or equal to ε,
the value of the error function does not change. To minimize Equation (5), the difference between the
predicted and targeted values is also assigned a cost (C).

1
2

n∑
n=1

[yn − tn]
2 +

λ
2
‖w‖2 (3)

Eε(y(x) − t) =
{

0,∣∣∣y(x) − t
∣∣∣− ε, i f

∣∣∣y(x) − t
∣∣∣ < ε

otherwise
(4)

C
n∑

n=1

Eε(y(xn) − tn) +
1
2
‖w‖2 (5)

where y(x) is the value that is predicted by Equation (2), t denotes the searched target function, ε is
the margin when the function fails to penalize and C denotes the penalty. The process is optimized,
although the initial function (Equation (3)) becomes more complex (Equation (6)).

y(x) =
n∑

n=1

(αi − αi
∗) < xi·x > +b (6)

where α is one solution to the optimization problem that can occur with the Lagrangian theory. The data
are changed by the function to data of a feature space. This improves the non-linear problem’s accuracy.
As a result, the final function resembles Equation (7).

y(x) =
n∑

n=1

(αi − αi
∗)k(xi, x) + b (7)
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For the purpose of classification, the best kernel is generally the Gaussian radial basis function
(RBF). It provides the greatest overall accuracy and kappa [47]. This study used this RBF function
(Equation (8)).

k(xi, x) = e−
‖xi−x‖2

2σ2 (8)

To program the methodology that was proposed, the R statistical software was selected [48].

2.3.4. Data Processing

In this work, the dataset was used for the support vector machine studies in the two study areas
of Candás and Luarca. Model training used 80% of the data points and testing accounted for the
remaining 20% (Table 3). This ratio is common in machine learning studies [49,50]. The tests were
conducted with several random data segmentations a total of 20 times. The additional results were
eliminated and the average of the remaining data was used for the studies.

Table 3. Number of data points of the training and testing data sets for the study areas.

Port Training Testing

Candás 1092 284
Luarca 1593 388

Checking and applying a valid methodology is necessary for the implementation of the remote
sensing measurements of the bathymetry of a specific area from optical images. In doing so, it was
necessary to discriminate and select only the most appropriate bands and to determine the corrections
of the images. The input variables that were used to model the bathymetry using SVM techniques were
correlated using Equation (1). If all possible combinations between bands were considered, the number
of input variables would be 68. Considering that this number of input variables was excessive, and in
order to optimize them, the correlation of the different bands to each other was analyzed. To conduct
the correlation analysis of the various bands, Pearson’s correlation coefficient was used. Pearson’s
correlation coefficient (R) appears in Table 4 as a measure of the linear correlation of each study’s
corresponding band pairs. A 1.0 coefficient of correlation indicates that two variables are correlated
perfectly, whereas a coefficient of 0.0 indicates the absence of a linear relationship [51]. Most bands,
except B9 and B1, were highly correlated with each other. To determine which bands were unnecessary,
the pairs of bands that had a correlation greater than 0.9 were plotted. Figure 4 provides the scatter
diagrams that show the relationship between pairs of bands that seem to supply visually the same
information from Sentinel-2. Perfect agreement between two bands was indicated in each diagram by
a 1-to-1 line.

Table 4. R values between main bands of Sentinel-2.

Band B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B11 B12

B1
B2 0.96
B3 0.89 0.98
B4 0.85 0.95 0.99
B5 0.82 0.9 0.95 0.97
B6 0.83 0.91 0.96 0.97 1
B7 0.82 0.9 0.95 0.97 0.99 1
B8 0.81 0.92 0.97 0.99 0.97 0.98 0.98

B8A 0.81 0.9 0.95 0.97 0.99 1 1 0.98
B9 −0.04 0.06 0.22 0.27 0.36 0.34 0.33 0.31 0.34

B11 0.74 0.84 0.9 0.94 0.98 0.98 0.98 0.96 0.98 0.38
B12 0.72 0.82 0.89 0.93 0.97 0.97 0.98 0.95 0.99 0.39 1
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Figure 4 indicates the high correlation between the bands. For this reason, some of the bands
represented (B5, B6, B8A and B11) were eliminated for modeling with SVM. Under the same conditions,
the bands with the highest resolution were maintained, since they have no calculated data due to
interpolation. Subsequently, the correlation of these 28 variables was analyzed again, and one variable
was eliminated. The bands that were chosen for data modeling were B1, B2, B3, B4, B7, B8, B9 and B12.
Finally, the status of the tide at the time of the orthophoto was added as an input variable to the model.

3. Results and Discussion

A comparison was made of the bathymetry that the Sentinel-2 satellite data made possible and
what the echo sounder in situ measurements provided for the ports of Candás and Luarca. The mean
absolute error (MAE) and the root mean squared error (RMSE) were analyzed to determine the
generalization capacities of the regression models. They can be calculated by equations 9 and 10.

MAE =
1
N

N∑
i=1

|ZSVM −Zecho| (9)
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RMSE =

√√√
1
N

N∑
i=1

(ZSVM −Zecho)
2 (10)

In this case, ZSVM is the SVM predicted depths from Sentinel-2 images and Zecho is the echo
sounder depths from the field data points. Further, the coefficient of determination is provided, it (R2)
indicates the regression model’s “goodness of fit.” On the other hand, the adjusted R2 penalizes the R2

value for each predictor variable in the regression model (in this case, the input variable).
Table 5 shows the depth characteristics of the study areas. It shows negative values for the

minimum depth (−5.0149 m in Candás and −11.9601 m in Luarca). The reason for this is that zero, “0”,
refers to the minimum level that has been registered in that port. In Spain, Royal Decree 1071/2007
established that the surface of the sea in the city of Alicante (Spain) has a zero value. Therefore,
a bathymetric measurement is normally considered to be the distance between the bottom to the zero
value, zero. In this study, it is considered to be the lowest value of the surface of the water at each port
(i.e., the minimum level that has been measured at the highest tide in the last 15 years).

Table 5. Depth characteristics of the study areas.

Port Max Depth
[m]

Min Depth
[m]

Mean Depth
[m]

Candás 1.3461 −5.0149 −1.5519
Luarca 1.5979 −11.9601 −4.0694

The coefficient of determination or R2, MAE and RMSE that appear in Table 6 were obtained
to determine the ability to predict and generalize of the SVM regression model that was obtained
using the training dataset. It can be seen that the values of both R2 coefficients for Candás (R2 = 0.911)
and Luarca (R2 = 0.976) are very close to 1, which is high. This indicates a high correlation between
the observed and estimated values. The table also shows that the MAE and RMSE values are small
and similar for Candás (MAE = 0.2779 m and RMSE = 0.3274 m) and Luarca (MAE = 0.3694 m and
RMSE = 0.4409). Thus, the adjustment of the regression model is accurate.

Table 6. Results for R2, mean absolute error (MAE), root mean squared error (RMSE) and relative error
in a comparison of support vector machine (SVM) predicted values and in situ measurement values of
depths using the training dataset.

Port R2 MAE
[m]

RMSE
[m]

Candás 0.911 0.2779 0.3694
Luarca 0.976 0.3274 0.4409

After determining the R2, MAE and RMSE errors, scatter diagrams of the SVM predicted depth
from the Sentinel-2 images (ZSVM) vs. the echo sounder depth (Zecho) from the training dataset for
Candás (see Figure 5) and Luarca (see Figure 6) were created. The points that are closest to the diagonal
line have the highest correlation to the regression models. In this case, both the Candás and Luarca
training dataset points are very close to the diagonal line.

In addition, Table 7 shows the R2, MAE and RMSE that were obtained using the testing dataset.
Similarly, it can be seen that, for the training dataset, the values of coefficients R2 for both Candás
(R2 = 0.8553) and Luarca (R2 = 0.9731) are very close to 1.0. This, also, is very high. It indicates that the
estimated values and the observed values are highly correlated. Further, the values of MAE and RMSE
that are shown in this table are small and similar for Candás (MAE = 0.3421 m and RMSE = 0.4370 m)
and Luarca (MAE = 0.3678 m and RMSE = 0.4640). The regression analysis results for the training and
testing dates were consistent.
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Figure 5. Scatter diagram of training data showing SVM predicted depth (m) from Sentinel-2 images
(ZSVM) vs. echo sounder depth (Zecho) from field data points for Candás.
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Figure 6. Scatter diagram of training data showing SVM predicted depth (m) from Sentinel-2 images
(ZSVM) vs. echo sounder depth (Zecho) from field data points for Luarca.

After determining the R2, MAE and RMSE errors, a scatter diagram of the SVM predicted depth
from the Sentinel-2 images (ZSVM) vs. the echo sounder depth (Zecho) from the testing dataset for
Candás (See Figure 7) and Luarca (See Figure 8) were created. As in Figures 5 and 6, points that are
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closest to the diagonal line mean that the correlation with the regression models is greater. In this case,
both the Candás and Luarca testing dataset points are also very close to the diagonal line.

Table 7. Results of the R2, MAE, RMSE and relative error when comparing SVM predicted and in situ
measurement value of depths using the testing dataset.

Port R2 MAE
[m]

RMSE
[m]

Candás 0.8553 0.3421 0.4370
Luarca 0.9731 0.3678 0.4640
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(ZSVM) vs. echo sounder depth (Zecho) from field data points for Candás.

In addition, the relative error of the average depth at the port was calculated using the training
and testing dataset (Table 8). The relative error values were 22.05% and 9.04% for Candás and Luarca,
respectively. It is greater in Candás because the average depth there is less. In order to obtain a more
representative average error for depth, also the error in the average range of depths was calculated.
In this case, the errors were 10.76% in Candás and 5.43% in Luarca for the training dataset, and 8.74%
in Candás and 4.83% in Luarca for the testing dataset. Despite high relative errors, it is important to
note that the objective of the work is that the surface generated by means of the dimensions that were
obtained should reflect reality and detect conflictive areas that are in need of dredging. Therefore,
although the error is important, it is less so than the general behavior of the generated surface.

Table 8. Results of the relative error when comparing the SVM predicted and in situ measurement
values of depth.

Training Dataset Testing Dataset

Port Relative
Error [%]

Relative Error
Range Depth [%]

Relative
Error [%]

Relative Error
Range Depth [%]

Candás 17.90% 8.74% 22.05% 10.76%
Luarca 8.05% 4.83% 9.04% 5.43%
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Figure 8. Scatter diagram of testing data showing SVM predicted depths (m) from Sentinel-2 images
(ZSVM) vs. echo sounder depth (Zecho) from field data points for Luarca.

Figures 9 and 10 represent the bathymetry maps of Candás and Luarca that were obtained using
the echo sounder in situ measurements and SVM algorithms.

In the estimated bathymetries that are shown in Figures 9a and 10a, one can detect the transitions
and changes in depth in the ports that were studied using this methodology. This is very interesting,
because in bathymetry, maps are more helpful in detecting the transitions and average behavior of
the bottom than the elevation at a specific point. Figures 9 and 10 show that, although the errors are
slightly higher in Luarca (Figure 10a), the general behavior of the seabed has been determined in
two ports, both in the deepest areas towards the open sea and in the shallowest and sheltered areas.
In addition. Figures 9a and 10a show how the algorithm determined correctly the areas of greatest
depth and those of lowest depth with smooth transitions, as well as the contour lines of the coasts.
In addition, complex areas of very shallow depth, such as the interior dock of the port of Candás
(Figure 9a), are also detected correctly.

To complete the study, a detailed image of the behavior of the contour lines obtained from
the bathymetry is generated. In the first phase, shallower areas are compared (Figure 11a,b and
Figure 12a,b), and in the second phase, zones of greater water depth are compared (Figure 11c,d and
Figure 12c,d).
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Figure 11. Details of zoomed areas in bathymetry maps in Candás. (a,c) from echo sounder in situ
measurements; (b,d) of SVM depth estimates. The colors denote the depth of the water in meters.

Figure 11 shows some details of zoomed areas to compare the bathymetry maps from the echo
sounder in situ measurements to the SVM depth estimates for Candás. In Figure 11a,b, it is revealed
that the contour lines have substantially similar shapes and also identify a zone of less depth and,
therefore, an area that may need dredging. From Figure 11b,d, it is shown that the representation of the
curves is also similar, although the result using an echo sounder indicates a smoother surface. Further,
a zone of greater depth is detected in the port. As expected, it was located at the entrance.

In the same way, in Figure 12, they were compared to some details of zoomed areas in Luarca from
the echo sounder in situ measurements (Figure 12a,c) and from the SVM depth estimates (Figure 12a,c).
In Figure 12a,b, it can be seen that the contour lines have shapes that are substantially similar and
parallel to the coastline. In the echo sounder bathymetry, the traces are smoother and better adjusted to
the type of bottom with a smooth slope. These results, which were predicted by SVM, are considered
to be valid, since they detect correctly the shallowest areas. Finally, in comparing Figure 12c,d, it is
seen that the representation of the echo sounder is also smoother. Although the contour lines of the
model do not conform precisely to reality, the areas of greater depth are detected.
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4. Conclusions

This work was an examination of a technique of remote sensing bathymetry that is based on
support vector machine techniques and Sentinel-2 imagery. It was used to estimate the depth in the
turbid water of two different ports in the cities of Luarca and Candás in the Principality of Asturias,
Spain. The satellite-estimated depth provides an alternative method with which to respond to the
increasing demand for coastal topography and bathymetry information in shallow water areas [52].
This approach brings a new perspective to remotely sensed estimated bathymetry. It also provides a
high level of accuracy and a cost-effective and efficient solution to the turbid areas of ports, which
must be dredged periodically to maintain the free draft and for adequate port management. The visual
and statistical results of the study of the ports of Luarca and Candás demonstrate the capacities of the
SVM techniques for the prediction of depths from satellite images. The proposed method achieved a
greater accuracy for the training dataset in Candás with a mean absolute error of 0.228 m, a root mean
squared error of 0.369 m and a coefficient of determination or R2 value of 0.911. The overall errors
that were experienced using the testing dataset were a mean absolute error of 0.368 m, a root mean
squared error of 0.463 m and a R2 value of 0.855. In the case of Luarca, the SVM method produces
depth estimates for the training dataset with a mean absolute error of 0.3274 m, a root mean squared
error of 0.441 m and an R2 value of 0.976. The errors in using the testing dataset were a mean absolute
error of 0.378 m, a root mean squared error of 0.464 m and an R2 value of 0.973. The low error values
obtained in training and testing for both study ports highlight the precision of the bathymetries that
were obtained. However, these values are higher than those that other authors obtained [9,23,43,53].
This may be due to the color and turbidity, since the bottoms, which were contaminated and had a
muddy composition, have higher light absorption than the sandy bottoms with clear waters that have
been analyzed in most studies. Another factor that may have affected these results was the use of a
free satellite that has a lower resolution than the satellites that other authors employed. In the future,
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different artificial neural network techniques should be studied for the estimation of depths with high
accuracy from open Sentinel-2 images.
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