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Abstract—The levels of stress while driving affect the way
we drive and have an impact on the likelihood of having an
accident. Different types of sensors, such as heart rate or skin
conductivity sensors, have been previously used to measure stress
related features. Estimated stress levels could be used to adapt the
driver’s environment to minimize distractions in high cognitive
demanding situations and to promote stress-friendly driving
behaviors. The way we drive has an impact on how stressors
affect the perceived cognitive demands by drivers, and at the
same time, the perceived stress has an impact on the actions
taken by the driver. In this paper, we evaluate how effectively
upcoming stress levels can be predicted considering current stress
levels, current driving behavior, and the shape of the road. We use
features, such as the positive kinetic energy and severity of curves
on the road to estimate how stress levels will evolve in the next
minute. Different machine learning techniques are evaluated and
the results for both intra and inter-city driving and for both
intra and inter driver data are presented. We have used data
from four different drivers with three different car models and
a motorbike and more than 220 test drives. Results show that
upcoming stress levels can be accurately predicted for a single
user (correlation r = 0.99 and classification accuracy 97.5%)
but prediction for different users is more limited (correlation
r = 0.92 and classification accuracy 46.9%).

Index Terins— Stress level prediction, stress-friendly driving
behavior, stress level classification, machine learning.

I. INTRODUCTION

UMAN factors are responsible for many of the traffic

accidents on the road. The data presented in [1] cate-
gorizes the major risk factors responsible for traffic accidents
according to their impact as: human factors (92%), vehicle
factors (2.6%), road/environmental factors (2.6%), and oth-
ers (2.8%). Among these, drivers’ human factors consist of
cognitive errors (40.6%), judgment errors (34.1%), execution
errors (10.3%), and others (15%). Cognitive errors appear in
highly cognitive demanding situations in which the cognitive
load as perceived by the driver is high and the actions taken
by the driver to handle those situations are in many occasions
not appropriate. Being able to detect the evolution of the

driver’s cognitive load and stress levels and to predict highly
demanding situations is crucial in order to provide help to the
driver to better handle these situations. In this paper, the impact
that current stress levels, driving behavior and environmental
road conditions have on the prediction of upcoming stress
levels is analyzed and major results presented.

There are many proposals on measuring and quantifying the
current driver’s cognitive load and stress levels in previous
research studies in literature. The paper in [2] described a
queuing network modeling approach to model the subjective
mental workload and the multitask performance. Using this
model, the interface of driving assistants could be automat-
ically adapted according to the workload. In [3], Itoh et al.
measured electrocardiogram (ECG) signals as well as head
rotational angles, pupil diameters, and eye blinking with a
faceLAB device installed in a driving simulator to calculate
the driving workload. In the study captured in [4], the driver’s
workload was estimated from lane changing. In [5], the authors
proposed a multiple linear regression equation to estimate
the driving workload. The model employs variables such as:
speed, steering angle, turn signal, and acceleration.

On the other hand, the impact of the cognitive load on
the driver behavior has been studied in many research papers.
In [6], Kim et al. analyzed the relationship between drivers’
distraction and the cognitive load. It was discovered that
heart rate, skin conductance, and left-pupil size were effec-
tive measurement variables for observing drivers’ distractions.
The work described in [7] showed that the visual demand
caused a reduction in the speed and increased the variation in
lane maintenance. The authors highlighted that the detection
of events is very important in order to capture the main
safety related effects of cognitive load and visual tasks. In [8],
the authors propose to use a set of variables (vehicle speed,
steering angle, acceleration, and gaze information) to estimate
the current workload of the driver. The authors achieved
an accuracy of 81% with this method. The authors con-
cluded that the driver’s workload required to perform primary
actions (driving) is influenced with the addition of secondary
verbal and special mental activities that the drivers have to
perform while driving using a simulator. Other studies such
as [9] also propose to use the movement of the steering wheel
as an indicator of the perceived workload by the driver.

In conclusion, although there exist significant research
works in previous literature on understanding the impact of
different cognitive load and stress levels both in physiological
signals (such as heart rate of skin conductance) and in driving
actions (such as moving the steering wheel or changing speed)
and how to use data from physiological and vehicle telemetry



sensors to estimate cognitive load and stress levels, a better
understanding about how current sensed information could
be used to predict upcoming stressful and highly cognitive
demanding situations is needed. Although simulators have
some positive features such as providing a controlled and
replicable environment for tests, their differences with real
world driving are important in how the driver perceives danger
and the impact that different stressors have on the drivers’
actions. Therefore, this paper will study correlations between
current levels of stress, cognitive load and current driver’s
driving behavior with upcoming levels of cognitive load and
stress in order to estimate and predict them in real driving
scenarios. The stress levels will be assessed by computing time
and frequency features from the Heart Rate Variability (HRV)
signal measured as a proxy physiological signal.

II. PHYSIOLOGICAL SENSORS AND STRESS LEVELS

Our goal is to predict upcoming levels of stress based on
current levels of stress, driving actions and road conditions.
A method to measure stress levels is therefore required.
Among the different alternatives to measure current stress lev-
els based on physiological sensors, we will use both time and
frequency computations based on the Heart Rate Variability
signal from the driver while driving. This section describes
an introduction to the major physiological sensors that have
been previously described in related research studies and their
merits, paving the way to justify the method used in this paper.

Several physiological sensors have been proposed in lit-
erature able to provide proxy variables for quantifying the
driver’s cognitive load and stress levels. These sensors include
heart-rate, heart-rate variability, pupil-dilation, blood-pressure,
respiration rate and GSR (Galvanic Skin Response) [10]. Some
references for estimating the cognitive load from sensed data
include Heart Period [11], Pupillary Response [12] and Heart
Rate Variability [13]. Studies about correlations between heart
rate, respiration rate and skin conductance with the amount
of encountered stressors while driving in real scenarios can
be found in [14]-[16]. Authors in [17] used a wrist device
including an accelerometer and a skin conductance sensor to
fnd correlations with stress levels. Using techniques such as
Support Vector Machines (SVM), k-nearest neighbors (KNN)
and Principal Component Analysis (PCA) and adding addi-
tional information coming from the user’s mobile device,
a 75% accuracy is obtained. The authors in [18] also estimate
the level of stress based on physiological sensors based on the
measured heart rate (HR) and galvanic skin response (GSR)
combined with other sensors such as electroencephalogra-
phy (EEG) and electromyography (EMG). In order to deal with
inter-person differences the authors use a clustering algorithm
to fi st divide the users into similar clusters using the k-means
algorithm and then to perform cluster-wise stress evaluation
using the general regression neural network taking into account
the variations in individual stress response. The authors in [19]
also combine physiological wearable sensors (heart rate and
skin conductance) with data coming from mobile phone usage
and surveys to fi d correlations with stress levels.

In the particular area that focuses on the impact that stress
and perceived cognitive load have on driving, among the

different sensors and physiological signals, the authors in [14]
found out that skin conductivity and heart rate based metrics
were the most closely correlated with stress levels. We will
use heart rate variability (HRV) based metrics both in the
frequency and time domains as the proxy features to estimate
the driver’s stress. Generally, both frequency and time based
parameters extracted from the heart rate variability (HRV)
analysis have been used as stress related factors. High fre-
quency power (HF; 0.15-0.4 Hz) relates to parasympathetic
nerve activity and low frequency power (LF; 0.04-0.15 Hz)
is modulated by both the sympathetic and parasympathetic
nervous systems. Thus, the LF/HF ratio refects the global
sympatho-vagal balance and could be used as a measure of this
balance [20]. Time domain parameters include the standard
deviation of NN intervals (SDNN) or time intervals between
consecutive heartbeats normally measured as R to R times,
the square root of the mean of the squares of the successive
differences between adjacent heartbeats (RMSSD) and the
proportion of consecutive heartbeats differing more than 50ms
divided by total number of measured heartbeats (pNN50) [20].
To be able to select among the different features derived from
the HRV signal, the authors in [26] assessed the validity and
reliability of telemetry-derived HRV responses to an orthosta-
tic challenge. They found the RMSDD and HF can be used to
provide a sensitive, valid and reliable assessment of autonomic
control of heart rate while SDNN did not signif cantly respond
to the orthostatic challenge.

Many laboratory studies have demonstrated changes
in cardiac autonomic control during psychological stress.
The authors in [21] attempted to demonstrate this effect
in ambulatory subjects fnding that psychological stress was
significantl associated with an increase in the LF/HF ratio,
suggesting increases in the relative predominance of sym-
pathetic nervous system activity during stressful periods of
the day. Vagal modulation of heart period appears to be
sensitive to the recent experience of persistent emotional stress,
regardless of a person’s level of physical fitne s and disposition
toward experiencing anxiety [22]. A 5 minute interval has
been normally used as the shortest time period over which
HRV metrics should be assessed [23]. However, there are
studies that try to assess how 5 minute windows correlate with
shorter period timeframes. The authors in [14] proposed that
1 minute windows could be used. If not considering the very
low frequency (VLF) part of the spectrum (0.014-0.05) the
lowest frequency to be measured in the LF range is 0.05 Hz
which provides a 20 second period bound to the time window
to be used.

Several previous research papers have studied the corre-
lations between HRV related features and perceived stress
while driving. The authors in [14] correlated several heart rate
based metrics with stress levels (the stress levels are estimated
by counting the number of stressors that the driver has to
face and the estimated time response of the human being
to these stressors). Each stressor contributes to increase the
cognitive load in the driver in order to be able to deal with
it. The correlations were found to be valid both for highway
as well as for city driving. The research work presented
in [15] uses the heart rate variability (HRV) as a proxy
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variable to get stress level measurements as the response by
the autonomic nervous system. The authors extract different
features from the HRV signal and use them as the input of
several classificati n algorithms in order assess whether it is
possible to classify stressful situations from HRV features.
They use the same database as [14] comprising 16 drivers and
are able to classify stressful situations with an 83% accuracy
using a SVM-RBF classifer. The authors in [16] reported
on the autonomic nervous system changes and driving style
modif cations as a response to incrementally stressing situa-
tions during 3 simulated driving tests with increasing stress
loads. They measured the impact on physiological signals and
some vehicle’s mechanical parameters (steering well angle
corrections, velocity changes, and time reposes). They also
used heart rate measurements as the base physiological signal.
Only driving simulations were used (lacking the richness of
features found in real driving environments). The research
conducted in [24] presents a heart rate variability (HRV)
parameter-based feature transformation algorithm for driving
stress recognition. The proposed parameter-based transforma-
tion algorithm consists of feature generation, feature selection,
and feature dimension reduction. A parameter-based feature
generation method from f ve-minute HRV analysis is proposed
in this study. The kernel-based class separability (KBCS)
is employed as the selection criterion for feature selection.
Principal component analysis (PCA) and linear discriminant
analysis (LDA) are adopted for feature dimension reduction.
The combination of KBCS, LDA, and PCA achieved recogni-
tion rates around 81%. The authors in [25] combined the HRV
signal with other physiological signals (EDA and respiration)
for detecting drivers’ stress and fatigue. Dividing the data
samples into 2 degrees of stress they were able to classify
86% of the samples correctly.

Each physiological sensor provides only a proxy variable
to estimate the cognitive load and stress levels and could also
be affected by other external and environmental variables.
Physical exercise and tiredness are just two examples of
external factors that also have an infuence on the HRV proxy
variables. At the same time, different types of stressors may
have a concurrent impact on the user’s stress levels. Our design
for the data gathering process has been conceived in order to
minimize the impact of factors which are not under study.
We have only taken data from drivers driving alone to work
and back home in similar situations each day (same hour, same
traffi conditions, with moderated previous walking to get into
the car and a relaxation period before driving, with the mobile
phone muted, with the radio switched off and without using
any navigation system). We have used the heart rate variability
as the proxy variable to estimate the driver’s cognitive load and
stress levels. We have analyzed the impact that current levels
of stress and recent driving actions such as accelerations and
deceleration and environmental factors such as the curvilinear
shape of the road have on upcoming levels of stress.

To the best of our knowledge, previous studies have mainly
focused on current stress estimation and monitoring. Our major
contribution goes a step forward and analyzes how much
information is there in the current stress level, driving behav-
ior and environmental road conditions in order to predict

how stress levels will evolve in the near future both for
intra and intercity environments and for intra and inter user
generalization. Predicting how stress levels associated to the
driving task will evolve over the next minute of time based
on the current observed information could be the basis for
stress-aware driving support and recommender tools.

III. THE IMPLEMENTED SCENARIO

In this section we present the objectives of the research
conducted and the details of the method used to implement
the experiment to achieve our objectives.

A. Objective

Our objective is to fnd the accuracy in predicting upcoming
stress levels while driving based on the current measurements
of stress levels, driving behavior and road shape and type.

B. Input Variables

In order to predict upcoming stress levels based on current
conditions, 3 different types of variables have been used:
stress related, driving behavior related and road shape and type
related.

1) Stress Related: We have computed both frequency and
time domain features from the Heart Rate Variability (HRV)
that have been assessed as having a higher correlation with
stress levels [14]. In particular, we have computed the LF/HF
ratio, considering low-frequency (LF; 0.05-0.15 Hz) and
high-frequency (HF; 0.15-0.5 Hz), and the RMSSD values
as proposed in [26] to have the higher reliability.

A 5 minute window is used to estimate the current levels
of stress based on the LF/HF and RMSSD features of the
HRYV signal over the last 5 minutes of driving. The 5 minute
window continuously moves with the driving each second
(as has been proposed in [14]). The average of the 5 minute
estimated stress calculated over the next minute from the
actual driving point is used as the target for estimating how
stress levels will evolve in the near future. We want to assess
how much information is already contained in the current
observable features about this upcoming stress.

2) Driving Behavior Related: The driver’s behavior has
been captured from the vehicle’s telemetry and GPS data.
Driving actions imply direct control over the pedals and the
steering wheel, being the steering wheel movements mainly
related to the shape of the road as captured in the environment
related set of features. In order to predict upcoming stress
levels we have concurrently used 2 time windows. First,
we calculate driving behavior related features on the same
5 minute window used to compute the stress related features
in order to take into account the driving information that
caused an infuence on the assessed current stress. Second,
in order to estimate how stress will evolve in the next minute,
the more recent driving data from the past minute has also
been used since more recent driving related data will correlate
with recently encountered stressors which will infuence on
how stress will evolve in the near future.

Taking both 1 and 5 minute windows into account, the fol-
lowing variables have been selected in our experiment to
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measure the behavior of the driver: average driving speed over
the last 5 minutes, average driving speed over the last minute,
average acceleration over the last 5 and 1 minutes and positive
Kinetic Energy (PKE) on a 5 and 1 minute window.

3) Road Shape and Type Related: Two features have been
included in the study to take into account the shape and type of
the road. The curvilinear shape of the road has been introduced
by averaging the angle between the current speed and next
speed vectors over a 5 minute and a 1 minute windows.
Since speed vectors are computed from GPS data, in order to
minimize errors when moving at low speeds, the speed vectors
are taken considering 5 second averages when travelling over
a threshold speed of 1m/s. The type of the road has been
considered by dividing intra-city and inter-city (rural) driving
samples.

C. Additional Measuring Considerations

One major limitation of the HRV signal in order to estimate
the level of stress and cognitive load is that there are other fac-
tors such as the physical exercise that also impact the measured
values. As described in the previous section, the experiment
has been designed to minimize the impact that factors outside
the study have on the measurements. In this way, only data
from drivers driving alone to work and back home in similar
situations each day (same hour, same traff ¢ conditions, with
moderated previous walking to get into the car and a relaxation
period of at least 30 seconds before driving, with the mobile
phone muted, with the radio switched off and without using
any navigation system) have been taken.

D. Method

In order to validate results taking into account different
drivers in different driving environments, 3 different users
using 3 different cars in 3 different regions have been selected.
The regions were Sheffiel in the UK and Madrid and Seville
in Spain. The vehicle models were an Opel Zafir Tourer,
a Citroen Xsara Picasso and a Citroen C5. In total, we have
obtained 200 test drives with around 5000 minutes of driving.
Each test drive comprised both urban and inter-urban (rural
and highway) sections. In order to validate the generalization
of results, a forth driver using a motorbike in 22 drives in an
urban route (Madrid) has been added.

A Polar H7 band was used to record the HRV signal.
The band was paired with a Nexus 6 Android Mobile device
running an application implemented for the experiment which
recorded the HRV together with GPS data and telemetry data
such as the driving speed.

We took samples for the input variables each second. A pre-
processing technique is used in order to detect outliers due to
errors in the sensor device. The body movements may affect
the measurements. Each measurement error results in very low
followed by a very high (or vice-versa) pairs of values which
are replaced by the average value.

The current acceleration of the vehicle is calculated based
on the measured speed as follows:
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In which v; represents the speed at the sample number i, a ;
the estimated acceleration at that sample and the derivative
of the speed is estimated by dividing the increment in speed
by the time elapsed between the consecutive samples i-1 and i.
The PKE is estimated over a period of time as follows:
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Where the sum is performed for the period considered and d
is the cumulated distance traveled during this time.
The intensity of turning is estimated using the formula:

PKE =
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Where the numerator represents the dot product between the
average direction vectors in the last 5 seconds and the average
direction vectors in the next 5 seconds and the denominator
captures the norm of such averaged vectors. The direction
vectors are calculated from the GPS coordinates. The average
over a period of 5 seconds is used to minimize the impact
of random errors in the GPS signal. In order to eliminate
the errors introduced at low speeds, a threshold in the speed
is used. This threshold has been empirically evaluated and a
value of 1 m/s has been found to perform well and therefore
selected for the experiment.
The target of the study is to assess if upcoming stress levels
can be predicted from past and current measured and computed
data. We have used the time average over the following driving
minute for two features calculated from the last 5 minute
sliding window from the HRV signal: the ratio LF/HF and the
RMSSD. We have evaluated several machine learning tools
in 2 scenarios:
1) Use the Average Stress Values for the Next Minute and
Regression Techniques

2) Cluster the average stress values for the next minute
in 3 groups (low, medium and high stress) and use
classifica ion techniques

TI; =cos™
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Correlation indexes for the estimated upcoming stress signal
and the real one are calculated for case 1). Confusion matrixes
are calculated for case 2). In all cases, 4 different training and
validation scenarios have been considered to assess the validity
of results and their generalization validity:

1) Training the system with part of the data for a particular
user and validating it with the rest of the data for the
same user (10-fold cross-validation and leave on journey
out)

2) The same as 1) but differentiating the case of inter and
intra city segments.

3) Training the system with all the data for a particular
user and validating it with all the data for a different
user

4) The same as 3) but differentiating the case of inter and
intra city segments.

IV. RESULTS

This section captures some of the results from the conducted
experiments. The results are presented in 4 sub-sections.
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TABLE 1
CORRELATION COEFFICIENTS WITH UPCOMING LH/HF VALUES

TABLE I

LF/HF CORRELATION COEFFICIENTS
(CITY 4+ RURAL ROADS)

Variable correlation coefficient

acc (5 min) 0.058610547
curvilinear (5 min) -0.057822176
PKE (5 min) 0.109690541
v (5 min) 0.124882195
acc (1 min) -0.135669081
curvilinear (1 min) -0.154139774
PKE (1 min) -0.200308376
v (1 min) 0.18470252
LF/HF (current) 0.838362352
LF/HF next 1

The first 3 sub-sections use data from the first 3 drivers
using 3 different models of cars. The last sub-section is based
on data collected from the forth driver using a motorbike.
The first sub-section is dedicated to show how accurately
upcoming levels of stress can be assessed based on recent
levels of stress, driving behavior and road shape for a single
user. The second sub-section captures the same results when
training the algorithms for one particular user and validating
them for a different one. The third subsection is dedicated to
show how well current levels of stress can be assessed only by
measuring the driving behavior and road shape (without taking
the HRV signal into account). Finally, the forth sub-section is
dedicated to validate the generalization of results to a different
vehicle type. Conclusions and discussions by comparing our
approach with previous related results found in literature are
presented in section V.

A. Single User Scenario

In this first case, part of the data of a single driver is used to
train the system and the rest of the data to validate it. A leave
one journey out and a 10-fold cross validation techniques
have been used and compared. Both the LF/HF ratio and the
RMSSD values have been studied.

Let‘s present first the LF/HF ratio related results. Before
trying to predict upcoming levels of stress based on the LF/HF
ratio, Table I captures the correlation indexes between the
upcoming stress levels and the independent variables that we
will use for its prediction. Table I shows that upcoming levels
of stress are more correlated with current levels of stress
(as measured over the last 5 minutes window). Temporal
averages over the last minute for the driving behavior and
road shape have a higher correlation with upcoming stress than
averages over the 5 minute window used for stress estimation.
This shows that recent driver behavior has a higher impact
in determining how the user’s perceived stress will evolve in
the near future. The PKE averaged over the last minute is the
variable most correlated with upcoming levels of stress.

Table II captures the correlation coefficients between the
real signal for the upcoming stress based on the average of
assessed values over a 5 minute sliding window of the LF/HF
ratio and the predicted signal based on 3 different regression
models: multilayer perceptron (MLP), linear regression and
Gaussian Processes (GP). Table II captures the results for
a single user over all the entire journeys (considering both

Leave one out

10-fold crossval.

MLP 0915 0.8686
Linear regression 0.9147 0.8906
GP 0.9113 0.9632
o e e @3l s predicted
12
10
E 8
E 6
4
2
0
- NS N ONOONO =N M N
T O NOOILTONNCSHLLOOMIN
AN NN OO NN O N
o o
t(s)
Fig. 1. Predicted vs real values for a particular test drive using linear
regression.
TABLE III
LF/HF CORRELATION COEFFICIENTS (RURAL ROADS)
Leave one out 10-fold crossval.
MLP 0.8843 0.8804
Linear regression 0.8862 0.8882
GP 0.7102 0.9854
TABLE IV

LF/HF CORRELATION COEFFICIENTS (CITY)

Leave one out 10-fold crossval.
MLP 0.7195 0.9499
Linear regression 0.8335 0.915
GP 0.8842 0.9777

rural and city roads) for 2 different validation strategies: leave
one journey out and 10-fold cross-validation. MLP and Linear
regression provide similar results in both cases. GP are able
to achieve a correlation of 0.96 if a 10-fold cross-validation
is used. Figure 1 shows in a graphical way the real and the
predicted signals for one particular journey left out in the
training phase using linear regression.

Tables III and IV present the same type of results but
restricting the data used both for training and validation
to rural and city roads. There is a slight improvement in
both cases for the case of using the 10-fold cross-validation
technique but the results degrade if using a leave one journey
out validation approach. Based on these results, we can say
that it is better to use all the data from previous journeys for
training instead of filtering it by road type in order to have
better predictions for new journeys.

Table V captures the correlation coefficients for the case of
the RMSSD signal. Upcoming averages for 1 minute segments
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TABLE V
CORRELATION COEFFICIENTS WITH UPCOMING RMSSD VALUES

TABLE VI
RMSSD CORRELATION COEFFICIENTS (CITY 4+ RURAL)

Variable correlation coefficient Leave one out 10-fold crossval.
acc (.S-min) , -0.26605309 MLP 0.5794 0.9255
curvilinear (5 min) -0.39018718 Linear regression 0.8886 0.881
PKE (5 min) -0.23994482
v (5 min) -0.44591002 £ Lt 2351
acc (1 min) -0.18700188
curvilinear (1 min) -0.41883065 o .
PKE (1 min) -0.14808566 real predicted
v (1 min) -0.4356931
RMSSD (current) 0.64070573 50
RMSSD next 1 40
g 30
LF/HF s
£ 20
10
” 10
8 0
7 z F } e e e R = I e I e
O N OO ONOWST O WOVWN O
6 NINNOMIWNNOMODON = MmO
5 i | A A NNNNM®M®
4 M t(s)
3
2 Fig. 3. Predicted vs real values for a particular test drive using linear
1 regression.
o
t(s) RMSSD CORRELATION COEFFICIENTS (RURAL ROADS)
RMSSD Leave one out 10-fold crossval.
30 MLP -0.3471 0.9423
Linear regression 0.8109 0.8143
GP 0.2996 0.9683
TABLE VIII
RMSSD CORRELATION COEFFICIENTS (CITY)
10
5 Leave one out 10-fold crossval.
MLP 0.1406 0.8072
ov-‘le—i&.D-—lkDv—i@v—‘lD-—ilDﬁ\D-—v\DHQ-—!kDﬁ‘Dv—lxDv—ikD LinearregreSSion 0.4789 0.8847
"2ﬁﬁﬁ@?%BﬂE?&gggEEggaggg'@ GP -0.5925 0.9683
t(s)

Fig. 2. RMSSD vs LE/HF graphical comparision.

of the RMSSD signal are less correlated with current values
for the last 5 minutes window than the LF/HF ratio with a
correlation coefficient of 0.64. Average acceleration values and
road shape also show a correlation coefficient higher than 0.4
(in this case negative since more accelerations and curvilinear
shapes negatively impact the RMSSD signal). In this case,
the 5 minute averages and the last 1 minute averages for the
driving behavior and road shape based features show similar
correlation coefficients with upcoming RMSSD values.
Figure 2 shows in a graphical way the LF/HF and RMSSD
signals for a particular journey. The figure shows an inverted
relationship (when the LF/HF ratio grows the RMSSD values
decrease and vice versa). The LF/HF ratio provides a direct
estimation of perceived stress levels while the RMSSD shows
a negative correlation with perceived stress (the bigger the
stress level the smaller the variability of inter-beat times).

Table VI captures the correlations coefficients between the
real RMSSD upcoming 1 minute average and the estimated
one for the same regression techniques and using both a leave
one out and a 10-fold cross-validation validation approaches.
The GP outperforms in this case both MLP and linear
regression improving the value for the correlation coefficient.
Figure 3 presents the real and the predicted values for a partic-
ular journey following the leave one out validation approach
and the linear regression algorithm (to be consistent with the
results in figure 1).

Tables VII and VIII capture the results for the correlation
coefficients for the RMSSD predicted signal when restricting
both training and validation data to inter and intra city road
segments. In this case, we see a similar effect as the one
we presented for the LF/HF case in terms of degradation
of performance for the leave one journey out validation
approach. Although the 10-fold cross-validation approach indi-
cates that good prediction results can be achieved for new
segments in the same journey, the leave one journey out
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TABLE IX
PREDICTED VALUE FOR UPCOMING LF/HF USING

SVM AND 10-FOLD VALIDATION

TABLE XII
LF/HF CORRELATION COEFFICIENTS (CITY + RURAL)

Train one user-test with a different one
Actual/Predicted Low Medium High MLP 0.6565
Low 0.94520548 0.05479452 0 Linear regression 0.8676
Medium 0.00801806 0.98816752 0.00381442 GP -0.2029
High 0 0.06252299 0.93747701
=== real predicted
4
TABLE X
PREDICTED VALUE FOR UPCOMING LF/HF USING 3
NAIVE BAYES AND 10-FOLD VALIDATION w
=)
Actual/Predicted Low Medium High %
Low 0.63387298 0.34806974 0.01805729 1
Medium 0.07877939 0.809357 0.11186362
High 0.00073556 0.22912836 0.77013608 0
-0 N ANOWMOT~ 1 0 L N O WO
Nmooommm‘—cgr\mwmv\o
NS O MmIN O NSNS
Y A NN AN ANANOODM
t(s)
TABLE XI
PREDICTED VALUE FOR UPCOMING LE/HF USING J.48 AND 10-FoLp  Fig. 4.  Predicted vs real values for a particular test drive using linear
VALIDATION regression.
Actual/Predicted Low Medium High
T.
Low 0.95765878 0.04171856 0.00062267 o ——
Medium 0.00513779 0.98583217 0.00903005 RMSSD CORRELATION COEFFICIENTS (CITY + RURAL)
High 0.00073556 0.06803972 0.93122471
Train onc user-test with a different one
MLP 0.6922
Linear regression 0.9247
GP -0.4148

approach indicates that estimated values for new journeys are
not so good.

In order to compare our proposed approach with previous
research works in literature, we have performed a second
prediction test, in this case dividing the stress levels into 3 cat-
egories: low, medium and high stress levels. This classification
of stress levels has been used in previous research studies
such as [14] and [15] in which low, medium and high stress
levels are characterized by the properties found during rest,
highway driving and city driving periods and validated using
questionnaires. In order to further divide the perceived stress
while driving in similar road types, we have used the standard
deviation of the computed signal (both for the LF/HF and
the RMSSD) to classify as medium/average samples those
comprised between the mean value plus/minus the standard
deviation. This is consistent with the data presented in [14]
for the stressor based computed signal. For the LF/HF ratio,
values above the mean plus the standard deviation are labeled
as high stress. For the RMSSD, values behind the mean
minus the standard deviation are labeled as high stress levels.
We have used different classification techniques. The con-
fusion matrixes for the Support Vector Machine (SVM),
the Naive Bayes and the J.48 algorithms for a 10-fold cross-
validation are captured in tables IX, X and XI. J.48 and SVM
show better results than Naive Bayes. For the case of SVM,
97.5% of the predicted samples are located in the correct
group. With the SVM none of the high stress segments is
predicted as low stress and vice-versa.

B. Cross-User Scenario

This sub-section captures the prediction results when train-
ing the algorithms with all the data available for one particular
user and applying the trained algorithms to validate the data
from a second driver. This will show if results from one user
are generalizable to the rest of the users.

Table XII captures the correlation coefficients for the LF/HF
ratio when training the algorithm for the user in Sheffield and
applying it to predict the next levels of stress for the user in
Seville. In this case, using a linear regression technique we are
able to achieve a correlation coefficient of 0.87. The graphical
results are captured in figure 4.

Table XIII captures the same results for the case of the
RMSSD signal. As in the previous case, the linear regression
technique outperforms both MLP and GP and in this cases
achieve a correlation coefficient of 0.92. The graphical results
are captured in figure 5.

The results for the inter and intra city are not captured for
this scenario since they proved to be worse than those for the
entire journey for the intra-user case.

Dividing the samples in the 3 level scale as we did for the
single-user case, and training the algorithm for the user in
Sheffield and predicting the values for the driver in Seville,
we get the results in tables XIV, XV and XVI. In this case,
we can see that the results show very poor performance for
inter-user predictions, especially for high values of stress.
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TABLE XVII

LF/HF PREDICTIONS
Same user Different User
MLP 0.3314 -0.3252
Linear regression 0.4435 -0.5601
GP 0.1463 -0.3109
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Fig. 6. Predicted vs real values for a particular test drive using linear
regression.
TABLE XVIII
RMSSD PREDICTIONS
Same user Different User
MLP 0.1528 -0.0502
Linear regression 0.0858 -0.0117
GP -0.0578 0.1004
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100
80
2 60
s
£ 40
20
[}
o a8
memmwmor\gﬁwmmm
OMOoOOUMORNM NMOMN~™M
A MM OWNVO =M WWO «m
™ e I NN N
t(s)
Fig. 5. Predicted vs real values for a particular test drive using linear
regression.
TABLE XIV
PREDICTED VALUE FOR UPCOMING LF/HF USING
SVM AND 10-FOLD VALIDATION
Actual/Predicted Low Medium High
Low 0.02105263 0.97894737 0
Medium 0.25121628 0.74568775 0.00309598
High 0.28336079 0.71663921 0
TABLE XV
PREDICTED VALUE FOR UPCOMING LF/HF USING
NAIVE BAYES AND 10-FOLD VALIDATION
Actual/Predicted Low Medium High
Low 0.96052632 0.03947368 0
Medium 0.82308713 0.17691287 0
High 0.91103789 0.08896211 0
TABLE XVI
PREDICTED VALUE FOR UPCOMING LF/HF USING
J.48 AND 10-FOLD VALIDATION
Actual/Predicted Low Medium High
Low 0.42763158 0.57236842 0
Medium 0.48827952 0.51172048 0
High 0.42833608 0.57166392 0

This result is aligned with those found in [18] in which,
in order to deal with inter-person differences, the authors use
a clustering algorithm to first divide the users into similar
clusters.

C. Predicting Stress Without the HRV Signal

Results in tables I and V show that there is certain corre-
lation between the driving behavior and road shape and the
stress signal. In this section we present the results about up
to what level the current LH/HF and RMSSD signals (based
on the last 5 minute window data) can be estimated based
only on the information of the driving related and road related
variables.

Table XVII captures the correlation coefficients between the
LF/HF measured signal and the estimated one using the same

regression techniques as in the previous sub-sections and using
the leave one journey out validation for the single-user case
and using all data from one user for training and all the data
for a different user for validation for the cross-user case. In this
case, the linear regression method shows the best results for
the single-user scenario. The graphical representation of the
real signal and the estimated one are captured in figure 6.
The results for the cross-user case show that it is not possible
to use the data from one user to predict the LF/HF signal
for a different one (showing that different users react in not
the same way to stressful situations). Again, a clustering
algorithm for grouping the users into similar sets is needed
and generalization results are bad outside each cluster of users
as presented in [18].

The same results for the RMSSD variable are captured in
table XVIIL. In this case, the correlation is very limited even
for the single user scenario and estimating stress based on
the estimation of this variable from driving behavior and road
shape will provide very poor results.

D. Results for a Different Type of Vehicle

In order to assess the generalization of results, a different
driver driving a different type of vehicle has been included
in the study. The driver used a motorbike to travel an urban
route in Madrid (Spain). 22 different drives in similar traffic
conditions on the same route have been used. Figure 7 captures
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Fig. 7. Predicted vs real values for a particular test drive using MLP.

TABLE XIX
LF/HF CORRELATION COEFFICIENTS (CITY-MOTORBIKE)

Leave one out 10-fold crossval.
MLP 0.9447 0.9271
Linear regression 0.8279 0.8225
GP 0.7809 0.7763

the actual values for the next minute stress compared to
predicted values for a particular drive using the leave-one-
out approach and the MLP algorithm. Table XIX captures
the results for the same algorithms and validations techniques
previously used in table IV for the case of the drivers using
a car as the vehicle. In this case, the MLP algorithm slightly
outperforms linear regression and Gaussian Processes (GP) but
results are similar to those presented in table IV.

V. DiscussiON BASED ON COMPARING RESULTS
WITH PREVIOUS STUDIES

This section is dedicated to compare the results presented
in this paper with related results in previous research studies.
Table XX captures the results obtained in some of the refer-
ences in this paper. For each reference, the input variables used
are captured together with the objective of the study and the
accuracy reported in each paper with the implemented meth-
ods. To the best of our knowledge, the major previous research
initiatives have tried to assess current values of stress based on
the information from several physiological sensors or driving
behavior data. Although the objective of our research is trying
to go a step forward and predict the upcoming levels of
stress, the accuracy obtained in this prediction is captured as
compared with the stress measurement existing techniques.

The first reference in table XIX achieves a 81% accuracy
for estimating the workload while driving (which is assumed
to correlated with the perceived stress). Several driving tasks
are monitored in order to compose a workload index. Some of
the variables used in this study have been also captured in our
system. The references [14], [15], and [24] focus on validating
the accuracy of using certain physiological sensors for measur-
ing the driver’s perceived stress. Reference [25] augments the
previous studies to include fatigue. References [15] and [16]
show a similar accuracy (around 82%) in detecting the driver’s

TABLE XX
COMPARISON OF RESULTS WITH PREVIOUS WORKS

Ref. | Inputs Objective Accuracy
[8] vehicle velocity, lane position,
steering angle, acceleration,
pupil diameter and gaze | Correct estimation
movements of work load 81%
[14] | 22 features from EMG,
respiration, ECG and skin | Detect stress per 5
conductivity minute segment 97.4%
[15] Detect stress per 5
ECG minute segment 83%
[24] Detect stress per 5
ECG minute segment 81.6%
[25] | respiration, ECG and skin
conductivity, gaze movement, | Detect stress and | 86% for
environmental condions fatigue stress
Our 97.5% same
app user
roac 46.9%
h HRV, speed, acceleration, | Predict upcoming | different
PKE, shape of the road stress levels user

perceived stress levels from the single ECG signal. The HRV
signal is obtained from the ECG signal and used in the
computations for correlations with a 5 minute window to
perceived stress (reported by users using questionnaires). Ref-
erence [14] is able to achieve better accuracy results (97.4%)
by adding other physiological sensors such as the skin con-
ductivity or respiration rate. Our approach is able to predict
with a similar accuracy (97.5%) upcoming levels in the LH/HF
signal based on past values for the HRV, driving related and
road shape related variables (in the case of a single user).
The major novelty of our approach is in predicting upcoming
levels and not simply assessing current levels of stress based
on proxy physiological signals.

VI. CONCLUSIONS

The results in this paper show that the current stress
levels while driving, the driving actions taken by the user to
respond to previous and recent stressors and road shape show
positive correlations in order to estimate upcoming levels of
stress (taken as the moving 5 minute average for both the
LH/HF and RMSSD over the upcoming 1 minute of driving)
for future journeys by the same driver. The current driving
related actions taken by the user in response to different
stressors will have an impact in how the stress levels evolve in
the next driving minute. A correlation index 0.99 for both the
LF/HF and RMSSD predicted and real signals are achieved
for the single user scenario while 97.5% of the samples
are classified in the right clusters when dividing the driving
samples in a 3 level stress scale.

The results for the stress prediction in the cross-user sce-
nario show that the way each user handles stress (or executes
driving actions as a response to different stressors) is different
and worse results are achieved both for correlation coefficients
and classification accuracy. As a further work, we plan to
gather data from more drivers in order to assess the improve-
ment in results when performing pre-clustering of users.

The results have shown that although it is possible to get an
estimation of stress based on current driving behavior and road
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shape for a single-user (independently of the vehicle being a
car or a motorbike) these results do not generalize a cross-user
scenario.

Finally, a comparison table has been included capturing the
accuracy obtained in previous related studies and the current
paper. We are able to obtained similar results as the best
previous studies using less physiological sensors and applying
the algorithm to predict upcoming stress rather than assess
current levels of stress.
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