Construcción y decodificación de códigos algebro-geométricos a partir de curvas planasalgoritmos y aplicaciones
- Farrán Martín, José Ignacio
- Antonio Campillo López Director
Universidade de defensa: Universidad de Valladolid
Ano de defensa: 1998
- Juan Gabriel Tena Ayuso Presidente/a
- Sylvia Novo Secretario/a
- Ignacio Luengo Velasco Vogal
- Tom Hoholdt Vogal
- Santos González Jiménez Vogal
Tipo: Tese
Resumo
En la Memoria se realiza un estudio exhaustivo de los algoritmos de Geometría Algebraica Computacional que se necesitan para construir y decodificar los llamados códigos geométricos de Goppa, tales como el cálculo de bases de L(D) para un divisor racional D, así como el cálculo del semigrupo de Weierstrass, las Funciones asociadas al mismo y la distancia de Feng y Rao para un punto racional de una curva, Tales métodos funcionan a partir de modelos planos de la curva considerada, y son más sencillos cuando el punto estudiado es el único punto en el infinito. En la Memoria se da además una aportación original en el terreno de la decodificacion de dichos códigos.