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Common problem in FDI...

•Difficult to gather knowledge about all fault conditions: 
‣ neither models
‣ nor fault data

... however

•Data from normal conditions are usually available

Novelty Detection in FDI
3
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Novelty Detection in FDI

Novelty detection approach

•Look for significant changes from normal condition

•Basic idea: 
find states that lie outside the kernel 
of the pdf of normal data

However

•If we apply ND to raw process data... 

•...we only analyze geometric relationships 
...we would not consider dynamics!

4

We need a model-based approach
that is, to consider dynamic models 
instead of static points
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widths, etc.) and u(k) is a vector with the delayed inputs
and outputs.

However, while this case is much more general, many
concepts related to linear systems, such as transfer function
and frequency response, used in this paper, are not directly
applicable.

3.2. Identification stage

Once a specific model structure (5) has been defined
through a proper selection of the type of function f(Æ, Æ),
as well as the structure of the parameter and data vectors,
the data may be subdivided into N subsets containing the
output and the data vector at different values of k con-
tained in an index set Ij

fyðkÞ;uðkÞgk2Ij j ¼ 1; . . . ;N ð11Þ

Then, a system identification must be carried out on each
subset using a least squares parameter estimation in the
case of linear systems, or iterative optimization algorithms
(e.g. backpropagation, Levenberg–Marquardt, etc.) if non-
linear parametric models such as neural networks are used.

This will produce a parameter set P = {p(1), . . . ,p(N)}
with N points in a parameter space Rp, each of which
defines a single dynamical model according to (5).

3.3. SOM projection stage

The following stage consists in training a SOM to define
a mapping between the parameter space and a low-dimen-
sional space, where every point gi is associated to a proto-
type vector mi in the parameter space, that univocally
defines a parameter set pi, and hence, a parametric model
y(k) = f(u(k),pi), literally constituting a map of dynamic
models (e.g. maps of transfer functions) that allows its visu-
alization and interpretation. The idea is shown graphically
in Fig. 1.

This idea can be extended to find relationships between
the process dynamic behavior and its operating point
defined by a set of process variables x1, . . . ,xn. This can
be done by augmenting the parameter space using extended
vectors q constituted by the vector of parameters p and a

vector of the process variables x, being also possible to
include time t, to analyze non-stationary behaviors:

q ¼ ½pT; xT; t%T ð12Þ
¼ ½p1; p2; . . . ; ppjx1; x2; . . . ; xnjt%

T ð13Þ

Once a SOM mapping has been established between the
parameter space and the 2D visualization space, each point
gi refers to a dynamic model whose parameters can be re-
trieved from the prototype vector mi

mi ¼ ½mi
p1
;mi

p2
; . . . ;mi

pp
jmi

x1
; . . . ;mi

xn jm
i
t%
T

This extension gives rise to a mapping that merges the pro-
cess dynamics defined by the parameters p and the process
working point defined by x into a single manifold in the
augmented space, resulting in a consistent joint representa-
tion of the process working point and its dynamics.

3.4. Representation of dynamic features

From the parameter vector associated to a given point gi
it is possible to obtain specific dynamic features or descrip-
tors that have physical sense and qualitatively inform
about different aspects of the process dynamics.

3.4.1. Component planes of the process variables
Component planes are well known visual representa-

tions in the SOM visualization literature (Kohonen,
1995). Particularly, component planes for each of the pro-
cess variables can be defined. Each component plane is
obtained by assigning to each node gi in the grid a gray
or color level proportional to the scalar value of the repre-
sented component mi

xj of the corresponding prototype unit
mi. This leads to n component planes

mi
x1
; . . . ;mi

xn

The component planes describe in an ordered fashion the
distribution of the values of the process variables across
the different process states and have been successfully used
by many authors as a standard visualization technique for
process analysis in a wide variety of fields (Abonyi et al.,
2003; Dı́az et al., 2003; Laine, 1998; Postolache et al.,
2005).

Fig. 1. Construction of maps of dynamics by means of projection of the parameter space.
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Novelty Detection in FDI

Maps of Dynamics (see [2])

• SOM is trained in a parametric space

•A map of models of all different dynamic behaviours is learned.

• SOM retrieval of best matching model allows
to use novelty detection principles to compare models

Visualization of Changes in Process Dynamics Using Self-Organizing Maps 9

Fig. 4. Force vibration residuals in a cold rolling mill during a chattered coil.

native visualizations such as time-time plots (using e.g. impulse responses of the
residual models instead of frequency responses) or plotting meaningful features
from the residual models selected on the basis of the problem domain.
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Modeling of Dynamics using SOM
Parametric model selection

dynamic
process

{u(k)} {y(k)}
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preserving at the same time a previously defined topology for the lattice. What
the SOM actually learns is a static model capturing the geometrical relation-
ships of data in the input space, that does not consider temporal sequences or
dynamic relationships. However, it can also be used to model the process dy-
namics. Several authors have proposed variants of the SOM to learn dynamic
behaviour of signals and processes. In [6] Kohonen already describes the operator
maps as an extension of the SOM that considers local dynamic models on each
unit. In [10], a procedure for learning dynamics is described based on training the
SOM in a embedded signal space and learning local linear models for each unit
from process data close to it. Some architectures, such as the VQTAM, include
short term memory to the SOM by considering vectors of time delayed versions
of inputs and outputs [1]. Another approach to store dynamics in the SOM is
to make it operate in a space of parameters –typically coefficients of dynamic
models– so that the SOM builds an ordered map of all dynamic behaviours that
can be used for visualization or further retrieval [2]. The proposed method in
this paper, rooted in this latter method, is accomplished in four stages: selection
of the parametric model structure, system identification of all dynamic states,
mapping the dynamics using a SOM and finally retrieval of the best dynamic
model and comparison to the current estimated model for further visualization.
A description of these stages is done in next subsections.

2.1 Selection of a Parametric Model

Let {u(k)} and {y(k)} be input and ouput sequences of a given process that are
supposed to be dynamically related by the parametric model y(k) = f(ϕ(k),p),
where p = [p1, · · · , pp]T is a parameter vector and ϕ(k) = [y(k − 1), · · · , y(k −
n), u(k), · · · , u(k −m)]T is a data vector. Depending on the choice of function
f(., .), the data vector ϕ(k) and the parameter vector p, different model types
(ARX, NARX, etc.) and orders can be considered. In this paper we shall choose
ARX(n,m) models

y(k) = a1y(k − 1) + · · · any(k − n) + b0u(k) + · · · + bmu(k −m) (1)

which corresponds to the following linear model y(k) = fL(ϕ(k),p) = pT ϕ(k).
This particular case corresponds to an LTI (linear time invariant) model that is
equivalent to the following transfer function representation

G(z,p) def=
b0 + b1z−1 + · · · bmz−m

1− a1z−1 − · · ·− anz−n
(2)

being ϕ(k) = [y(k−1), · · · , y(k−n), u(k), · · · , u(k−m)]T the data vector and
p = [a1, · · · , an, b0, b1, · · · bm]T the parameter vector, which defines the transfer
function. While this model is simple, it may describe a rather general class
of nonlinear global behaviours of the process as an aggregation of local linear
models, and at the same time it brings insight to engineers and domain experts,

linear case...

Nonlinear dynamics (NARX):
y(k) = f(ϕ(k),p)

ϕ(k) = [y(k − 1), · · · , y(k − n), u(k), · · · , u(k −m)]T
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G(z,p) def=
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models, and at the same time it brings insight to engineers and domain experts,

Transfer function
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Parameter vector
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Linear difference equation
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Modeling of Dynamics using SOM
Identification stage

4 Ignacio Dı́az et al.

since it allows to exploit the wealth of analysis tools and descriptors available
for linear systems commonly used in engineering.

2.2 Identification Stage

The available process data can be subdivided into N subsets containing the
output and the data vector at different values of k contained in an index set Ij

{y(k), ϕ(k)}k∈Ij , j = 1, · · ·N (3)

Each subset should ideally include process data with similar dynamics. For
instance a kmeans or another SOM with N units can be trained to cluster the
space of variables that define the dynamic state –typically, the operating point–
and choose

Ij = {all k such that ‖xk −mj‖ < ε}

where x is the the process operating point at sample k and mj is the j-th
codebook vector of the SOM or kmeans algorithm.

When the process dynamics change slowly, however, a simpler and practical
way to build subsets is to use overlapped windows of length n of the data Ij =
{kj − n + 1, kj − n + 2, · · · , kj}.

Once the subsets are defined, a system identification can be carried out on
each subset using any optimization technique –e.g. a least squares– to produce
a parameter set P = {p(1), · · · ,p(N)} with N points in a parameter space Rp,
such that the cost function

J =
∑

k∈Ij

‖y(k)− f(ϕ(k),p(k))‖2 (4)

is minimized.

2.3 SOM Projection Stage

In this stage, a SOM is trained in the parameter space, using the data set P
obtained in the previous stage. After training, the codebook vector mi of the
SOM unit i contains the parameters of a dynamic model whose behaviour can
be reproduced using

y(k) = f(ϕ(k),mi) (5)

In consequence, the SOM stores all the dynamic behaviours of the process
identified in the previous stage, allowing for visualization of dynamic features,
as shown in [2] or, as it will be shown here, to compare the current dynamic
behaviour with the stored dynamic behaviours and yield a residual dynamic
model that can be visualized.

Divide process data into N subsets

Local models
(gather data around operating point)
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obtained in the previous stage. After training, the codebook vector mi of the
SOM unit i contains the parameters of a dynamic model whose behaviour can
be reproduced using

y(k) = f(ϕ(k),mi) (5)

In consequence, the SOM stores all the dynamic behaviours of the process
identified in the previous stage, allowing for visualization of dynamic features,
as shown in [2] or, as it will be shown here, to compare the current dynamic
behaviour with the stored dynamic behaviours and yield a residual dynamic
model that can be visualized.
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2.4 Visualization of Changes in Dynamic Behaviour

Let’s consider a set of process data {y(k), ϕ(k)}k∈Wk obtained in a window
Wk = {k − n + 1, · · · , k}. Using the same identification technique as in the
identification stage on this data set, a vector of model parameters p(k) can be
estimated. From this vector, the best matching unit mc(k) of the SOM can be
obtained, such that c(k) = arg mini{‖p(k)−mi‖}.

Since the current and estimated models of the process dynamics are avail-
able, a residual model can be defined by comparing both models in a proper
way, looking forward to maximize insightfulness. A powerful way to visualize
differences between both models is to use the frequency domain

R(ejθ, k) =
G(ejθ,p(k))
G(ejθ,mc(k))

(6)

where R(ejθ, k) is the residual frequency response for window Wk. Since residual
models can be typically obtained in a sequential way for overlapping windows
Wk, a residual spectrogram can be defined in a straightforward way, providing a
time-frequency description of process changes by making a color image represen-
tation of a matrix whose columns contain the frequency response of the residual
model. Using a logarithmic representation in decibels (dB) –usually more conve-
nient in typical engineering applications– at sample k during the execution with
test data, k-th column would be,
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3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant
composed of 4 tanks, two pumps and three-way valves that allow to derive fluid
to any of the tanks. A liquid level control system in one of the tanks was subject
to different dynamic conditions by changing the base area of the tank. The liquid
level dynamics can be described by the following ordinary differential equation
(ODE),

Ab
dh(t)

dt
= qin(t)−Ac

√
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using a proportional-
integral (PI) control law, where the error signal e(t) = r(t)−h(t) is the difference
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3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant
composed of 4 tanks, two pumps and three-way valves that allow to derive fluid
to any of the tanks. A liquid level control system in one of the tanks was subject
to different dynamic conditions by changing the base area of the tank. The liquid
level dynamics can be described by the following ordinary differential equation
(ODE),
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where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using a proportional-
integral (PI) control law, where the error signal e(t) = r(t)−h(t) is the difference
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composed of 4 tanks, two pumps and three-way valves that allow to derive fluid
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since it allows to exploit the wealth of analysis tools and descriptors available
for linear systems commonly used in engineering.

2.2 Identification Stage

The available process data can be subdivided into N subsets containing the
output and the data vector at different values of k contained in an index set Ij

{y(k), ϕ(k)}k∈Ij , j = 1, · · ·N (3)

Each subset should ideally include process data with similar dynamics. For
instance a kmeans or another SOM with N units can be trained to cluster the
space of variables that define the dynamic state –typically, the operating point–
and choose

Ij = {all k such that ‖xk −mj‖ < ε}

where x is the the process operating point at sample k and mj is the j-th
codebook vector of the SOM or kmeans algorithm.

When the process dynamics change slowly, however, a simpler and practical
way to build subsets is to use overlapped windows of length n of the data Ij =
{kj − n + 1, kj − n + 2, · · · , kj}.

Once the subsets are defined, a system identification can be carried out on
each subset using any optimization technique –e.g. a least squares– to produce
a parameter set P = {p(1), · · · ,p(N)} with N points in a parameter space Rp,
such that the cost function

J =
∑

k∈Ij

‖y(k)− f(ϕ(k),p(k))‖2 (4)

is minimized.

2.3 SOM Projection Stage

In this stage, a SOM is trained in the parameter space, using the data set P
obtained in the previous stage. After training, the codebook vector mi of the
SOM unit i contains the parameters of a dynamic model whose behaviour can
be reproduced using

y(k) = f(ϕ(k),mi) (5)

In consequence, the SOM stores all the dynamic behaviours of the process
identified in the previous stage, allowing for visualization of dynamic features,
as shown in [2] or, as it will be shown here, to compare the current dynamic
behaviour with the stored dynamic behaviours and yield a residual dynamic
model that can be visualized.

minimize:

SOM bmu
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to any of the tanks. A liquid level control system in one of the tanks was subject
to different dynamic conditions by changing the base area of the tank. The liquid
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sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using a proportional-
integral (PI) control law, where the error signal e(t) = r(t)−h(t) is the difference
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level dynamics can be described by the following ordinary differential equation
(ODE),

Ab
dh(t)

dt
= qin(t)−Ac

√
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
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integral (PI) control law, where the error signal e(t) = r(t)−h(t) is the difference

(actual model)

Example: input (blue) and output (red) from a process

10

dynamic
process

u(k) y(k)

 

 

1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

200

250

 

 

1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

200

250

!5

0

5

!5

0

5

visualize

time

frequency

k
th  w

indow



20th ICANN 2010, Thessaloniki, Greece.  (17/09/2010) / 16

Results
Tank level control dynamics

Visualization of Changes in Process Dynamics Using Self-Organizing Maps 5

2.4 Visualization of Changes in Dynamic Behaviour
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to maximize insightfulness. A powerful way to visualize differences between both
models is frequency domain

R(ejθ, k) =
G(ejθ,p(k))
G(ejθ,mc(k))

(6)

where R(ejθ, k) is the residual spectrum for window Wk. Since residual spectra
can be typically obtained in a sequential way for overlapping windows Wk, a
residual spectrogram can be defined in a straightforward way, providing a time-
frequency description of process changes by making a color image representation
of a matrix whose columns contain the spectral response of the residual model.
Using a logarithmic representation in decibels (dB) –usually more convenient
in typical engineering applications– at sample k during the execution with test
data, k-th column could be,
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3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant
composed of 4 tanks, two pumps and valves that allow to derive fluid to any
of the tanks. A liquid level control system in one of the tanks was subject to
different dynamic conditions by changing the base area of the tank. The liquid
level dynamics can be described by the following ordinary differential equation
(ODE),

Ab
dh(t)

dt
= qin(t)−Ac

√
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to a changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using the following PI
control law

qin(t) = Kp +
1
Ti

∫ t

0
e(t)dt (8)

where the error signal e(t) = r(t)−h(t) is the difference between the setpoint
value r(t) and the actual liquid level h(t). The closed loop control system was
made to work under 6 different conditions varying Ab as shown in table, by
introducing different objects inside the tank,
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where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to a changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using the following PI
control law
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Ti
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Fig. 1. Block diagram of the tank level control system.

Table 1. The 6 conditions produced by changing the base area of the tank.

Condition base area description

1 Ab = 389.16 cm2 (no objects)
2 Ab = 332.61 cm2 (two small cilindric objects)
3 Ab = 332.61 cm2 (two small cilindric objects)
4 Ab = 282.35 cm2 (a large cilindric object + 2 small cilindric objects)
5 Ab = 343.80 cm2 (a large cilindric object)
6 Ab = 389.16 cm2 (no objects)

between the setpoint value r(t) and the actual liquid level h(t) –see Fig. 1. The
closed loop control system was made to work under 6 different conditions varying
Ab as shown in table, by introducing different objects inside the tank.

In order to describe the dynamics of the feedback system –relating the level
reference r and the liquid level h–, that includes the PI control law and the
changing tank dynamics, a second order model was considered

G(z,p) =
b0 + b1z−1 + b2z−2

1− a1z−1 − a2z−2
(8)

Data acquisition of the reference r(k) and the liquid level h(k) was done at
a rate of 8 samples per second. To build the parameter space, windows Wk with
a length n = 500 samples were regularly taken at intervals of 20 samples, a
standard LS identification was used to obtain the parameters.

To learn the process dynamics, parameter data were divided into two sets: a
training set including data of conditions 1 and 2 (ranging from t = 0 to t = 45
min.), that will be considered “normal” and a test set including conditions 3, 4,
5 and 6 (from t = 45 min. to the end of the experiment), that includes “normal”
dynamic states (conditions 3 and 6) as well as “novel” dynamic states (4 and 5).

A 35× 35 SOM was trained on the parameters estimated from training set,
using ±1 normalization and the batch algorithm with 10 epochs and a gaussian
neighborhood with a width σ monotonically decreasing from 11.66 ( 1

3 of the grid
size) to 1.2. Finally, the residual spectrogram was built on a logarithmic scale
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Fig. 2. Reference level, r(t), and actual level, h(t), expressed in % of the total tank
height (note a different dynamic behaviour approximately between 70 and 110 min.)

as shown in previous section. The residual spectrogram is displayed with the
original spectrogram for comparison in Fig. 3

3.2 Isolation of Chatter Effect in Vibration Data of a Rolling Mill

The proposed method was also applied to isolate the chatter effect (unusual
vibration mode) in a cold rolling mill. It was applied to data from a 969mm width
coil rolled in a 5−stand cold rolling mill to isolate unseen vibration patterns in
the roll force F5(t) at stand 5, with respect to a training set on which the mill
run under normal conditions.

Data of the experiment were acquired using a data acquisition board at a
sample rate of 5000Hz and were decimated by a ratio 1:10 down to a final 500
Hz sample rate. Data were divided into overlapped windows Wj of length 1000
each, displaced by 10 samples. An AR(110) model,

F5(k) = a1F5(k − 1) + · · · + a110F5(k − 110) + ε (9)

was chosen to describe the spectral content of the roll forces on the basis of
the level of detail (number of main harmonics) required to define the spectral
envelope of the forces. The AR(110) model was estimated for each window Wj ,
on the training set as well as on a test set, using a standard LS parameter fit
of eq. (9) within each window, to obtain each parameter vector p(j). A 30× 30
SOM was trained on the parameter space spanned by a training set containing
samples 7000 to 8889, using the batch algorithm with a gaussian neighborhood
for a width factor σ decreasing from 10 to 0.7.

The residual spectrogram of Fig. 4 was obtained as described in the previous
sections, based on the model trained with data from samples 7000 to 8889. As
seen, it highlights only the novelties (time and frequency), and hides “known”
spectral patterns making them appear on white color.
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Fig. 3. Residuals of the dynamic conditions in tank level control system. Training set
contains process in conditions 1 and 2. It can be seen how similar conditions (3 and 6)
yield small residuals while conditions 4 and 5 show up the differences in the frequency
response.

4 Conclusion

In this paper a novel method to visualize changes in the dynamic response of
process has been proposed. The method is rooted on the idea of maps of dynam-
ics, where the self-organizing map is used to learn and map all local dynamic
behaviours of the process present in a training data set, and allows to display
qualitative information on changes in the dynamic response by means of compar-
ison between the closest stored dynamic model and the current model, following
therefore a model based approach. The proposed method not only provides a way
to detect the presence of changes, but also gives qualitative information about
the nature of the change, showing the affected frequencies. All this information
may be efficiently displayed in a time-frequency plot (residual spectrogram) that
hides known frequency patterns and shows up novel spectral patterns and the
time instant where the changes appeared. The idea is shown on two real data ex-
amples: tank level control dynamics and visualization of chatter in a cold rolling
mill.

The method can be potentially used in many other ways, admitting a number
of possible variations such as using local nonlinear models or developing alter-
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to maximize insightfulness. A powerful way to visualize differences between both
models is frequency domain

R(ejθ, k) =
G(ejθ,p(k))
G(ejθ,mc(k))

(6)

where R(ejθ, k) is the residual spectrum for window Wk. Since residual spectra
can be typically obtained in a sequential way for overlapping windows Wk, a
residual spectrogram can be defined in a straightforward way, providing a time-
frequency description of process changes by making a color image representation
of a matrix whose columns contain the spectral response of the residual model.
Using a logarithmic representation in decibels (dB) –usually more convenient
in typical engineering applications– at sample k during the execution with test
data, k-th column could be,

20 log10
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3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant
composed of 4 tanks, two pumps and valves that allow to derive fluid to any
of the tanks. A liquid level control system in one of the tanks was subject to
different dynamic conditions by changing the base area of the tank. The liquid
level dynamics can be described by the following ordinary differential equation
(ODE),

Ab
dh(t)

dt
= qin(t)−Ac

√
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to a changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using the following PI
control law

qin(t) = Kp +
1
Ti

∫ t

0
e(t)dt (8)

where the error signal e(t) = r(t)−h(t) is the difference between the setpoint
value r(t) and the actual liquid level h(t). The closed loop control system was
made to work under 6 different conditions varying Ab as shown in table, by
introducing different objects inside the tank,
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Table 1. The 6 conditions produced by changing the base area of the tank.

Condition base area description

1 Ab = 389.16 cm2 (no objects)
2 Ab = 332.61 cm2 (two small cilindric objects)
3 Ab = 332.61 cm2 (two small cilindric objects)
4 Ab = 282.35 cm2 (a large cilindric object + 2 small cilindric objects)
5 Ab = 343.80 cm2 (a large cilindric object)
6 Ab = 389.16 cm2 (no objects)

between the setpoint value r(t) and the actual liquid level h(t) –see Fig. 1. The
closed loop control system was made to work under 6 different conditions varying
Ab as shown in table, by introducing different objects inside the tank.

In order to describe the dynamics of the feedback system –relating the level
reference r and the liquid level h–, that includes the PI control law and the
changing tank dynamics, a second order model was considered

G(z,p) =
b0 + b1z−1 + b2z−2

1− a1z−1 − a2z−2
(8)

Data acquisition of the reference r(k) and the liquid level h(k) was done at
a rate of 8 samples per second. To build the parameter space, windows Wk with
a length n = 500 samples were regularly taken at intervals of 20 samples, a
standard LS identification was used to obtain the parameters.

To learn the process dynamics, parameter data were divided into two sets: a
training set including data of conditions 1 and 2 (ranging from t = 0 to t = 45
min.), that will be considered “normal” and a test set including conditions 3, 4,
5 and 6 (from t = 45 min. to the end of the experiment), that includes “normal”
dynamic states (conditions 3 and 6) as well as “novel” dynamic states (4 and 5).

A 35× 35 SOM was trained on the parameters estimated from training set,
using ±1 normalization and the batch algorithm with 10 epochs and a gaussian
neighborhood with a width σ monotonically decreasing from 11.66 ( 1

3 of the grid
size) to 1.2. Finally, the residual spectrogram was built on a logarithmic scale

Parametric model:

Training parameters:
• window length: 500 samples
• windows regularly taken each 20 samples
• trained with data from conditions 1 and 2

SOM training parameters:
• 35 x 35 nodes
• 10 epochs
• gaussian neighborhood 

decreasing from 11.66 to 1.2

Residual spectrogram:
• logarithmic color scale
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Fig. 4. Force vibration residuals in a cold rolling mill during a chattered coil.

native visualizations such as time-time plots (using e.g. impulse responses of the
residual models instead of frequency responses) or plotting meaningful features
from the residual models selected on the basis of the problem domain.
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height (note a different dynamic behaviour approximately between 70 and 110 min.)

as shown in previous section. The residual spectrogram is displayed with the
original spectrogram for comparison in Fig. 3

3.2 Isolation of Chatter Effect in Vibration Data of a Rolling Mill

The proposed method was also applied to isolate the chatter effect (unusual
vibration mode) in a cold rolling mill. It was applied to data from a 969mm width
coil rolled in a 5−stand cold rolling mill to isolate unseen vibration patterns in
the roll force F5(t) at stand 5, with respect to a training set on which the mill
run under normal conditions.

Data of the experiment were acquired using a data acquisition board at a
sample rate of 5000Hz and were decimated by a ratio 1:10 down to a final 500
Hz sample rate. Data were divided into overlapped windows Wj of length 1000
each, displaced by 10 samples. An AR(110) model,

F5(k) = a1F5(k − 1) + · · · + a110F5(k − 110) + ε (9)

was chosen to describe the spectral content of the roll forces on the basis of
the level of detail (number of main harmonics) required to define the spectral
envelope of the forces. The AR(110) model was estimated for each window Wj ,
on the training set as well as on a test set, using a standard LS parameter fit
of eq. (9) within each window, to obtain each parameter vector p(j). A 30× 30
SOM was trained on the parameter space spanned by a training set containing
samples 7000 to 8889, using the batch algorithm with a gaussian neighborhood
for a width factor σ decreasing from 10 to 0.7.

The residual spectrogram of Fig. 4 was obtained as described in the previous
sections, based on the model trained with data from samples 7000 to 8889. As
seen, it highlights only the novelties (time and frequency), and hides “known”
spectral patterns making them appear on white color.
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Method based on Maps of Dynamics

•rooted on a model based approach

•normal dynamic behaviours are stored on a SOM

The method allows

•Detection of changes, but also...

•... provides qualitative information on the nature of changes

Effective time frequency plot (residual spectrogram) 
may show:

•time where abnormal behaviour appears

•eventual time patterns (cadence of faults, trends, etc.)

•involved frequencies

Conclusions
15
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Future Work

Use different metrics to compare dynamic models 
(e.g. H∞)

•In the parameter space, for SOM training

•To compare actual vs. stored models

Explore new ways to produce meaningful residuals

•Use of nonlinear models

•Alternative visualizations (e.g. time-time plots)

•Plotting individual meaningful features from residual 
models
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Questions
Thank you for your attention!


